Abstract
Mulmuley [Mul12a] recently gave an explicit version of Noether’s Normalization Lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In this work, we show this is not the case. That is, we improve Mulmuley’s reduction and correspondingly weaken the conjecture regarding PIT needed to give explicit Noether Normalization. We then observe that the weaker conjecture has recently been nearly settled by the authors ([FS12]), who gave quasipolynomial size hitting sets for the class of read-once oblivious algebraic branching programs (ROABPs). This gives the desired explicit Noether Normalization unconditionally, up to quasipolynomial factors.
As a consequence of our proof we give a deterministic parallel polynomial-time algorithm for deciding if two matrix tuples have intersecting orbit closures, under simultaneous conjugation.
Finally, we consider the depth-3 diagonal circuit model as defined by Saxena [Sax08], as PIT algorithms for this model also have implications in Mulmuley’s work. Previous works (such as [ASS13] and [FS12]) have given quasipolynomial size hitting sets for this model. In this work, we give a much simpler construction of such hitting sets, using techniques of Shpilka and Volkovich [SV09].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Joglekar, P.S., Srinivasan, S.: Arithmetic Circuits and the Hadamard Product of Polynomials. In: FSTTCS, pp. 25–36 (2009)
Agrawal, M., Saha, C., Saxena, N.: Quasi-polynomial hitting-set for set-depth-Δ formulas.. Electronic Colloquium on Computational Complexity (ECCC) 19(113) (2012)
Agrawal, M., Saha, C., Saxena, N.: Quasi-polynomial hitting-set for set-depth-Δ formulas. In: STOC, pp. 321–330. Full version in [ASS12] (2013)
Belitskiĭ, G.R.: Normal forms in a space of matrices. In: Analysis in Infinite-dimensional Spaces and Operator Theory, pp. 3–15 (1983) (in Russian)
Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)
Chistov, A.L., Ivanyos, G., Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 68–74 (1997)
Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007)
Derksen, H., Kemper, G.: Computational invariant theory. In: Invariant Theory and Algebraic Transformation Groups, I. Springer, Berlin (2002); Encyclopaedia of Mathematical Sciences, vol. 130
DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978)
Formanek, E.: Generating the ring of matrix invariants. In: Ring theory (Antwerp, 1985). Lecture Notes in Math., vol. 1197, pp. 73–82. Springer, Berlin (1986)
Forbes, M.A., Shpilka, A.: Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. Electronic Colloquium on Computational Complexity (ECCC) 19, 115 (2012)
Forbes, M.A., Shpilka, A.: Explicit noether normalization for simultaneous conjugation via polynomial identity testing. Electronic Colloquium on Computational Complexity (ECCC) 20, 33 (2013)
Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: A chasm at depth three. Electronic Colloquium on Computational Complexity (ECCC) 20(26) (2013)
Grochow, J.: Private communication (2013)
Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci. 65(4), 672–694 (2002)
Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: STOC, pp. 220–229 (1997)
Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)
Kraft, H., Procesi, C.: Classical invariant theory, a primer. Lecture Notes (2000)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn., vol. 34. Springer, Berlin (1994)
Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. in Math. 46(3), 305–329 (1982)
Malod, G., Portier, N.: Characterizing valiant’s algebraic complexity classes. J. Complexity 24(1), 16–38 (2008)
Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma. In: FOCS, pp. 629–638 (2012)
Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma. arXiv, abs/1209.5993 (2012); Full version of the FOCS 2012 paper
Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma (2012), http://techtalks.tv/talks/geometric-complexity-theory-v-equivalence-between-blackbox-derandomization-of-polynomial-identity-testing-and-derandomization-of/57829/
Nisan, N.: Lower bounds for non-commutative computation. In: STOC, pp. 410–418 (1991)
Procesi, C.: The invariant theory of n×n matrices. Advances in Math. 19(3), 306–381 (1976)
Razmyslov, J.P.: Identities with trace in full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat. 38, 723–756 (1974)
Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Computational Complexity 14(1), 1–19 (2005)
Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg (2008)
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)
Sergeichuk, V.V.: Canonical matrices for linear matrix problems. Linear Algebra Appl. 317(1-3), 53–102 (2000)
Saha, C., Saptharishi, R., Saxena, N.: A Case of Depth-3 Identity Testing, Sparse Factorization and Duality. Computational Complexity 22(1), 39–69 (2013)
Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once formulas. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 700–713. Springer, Heidelberg (2009)
Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388 (2010)
Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979)
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Forbes, M.A., Shpilka, A. (2013). Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-40328-6_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40327-9
Online ISBN: 978-3-642-40328-6
eBook Packages: Computer ScienceComputer Science (R0)