Skip to main content

Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2013, RANDOM 2013)

Abstract

Mulmuley [Mul12a] recently gave an explicit version of Noether’s Normalization Lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In this work, we show this is not the case. That is, we improve Mulmuley’s reduction and correspondingly weaken the conjecture regarding PIT needed to give explicit Noether Normalization. We then observe that the weaker conjecture has recently been nearly settled by the authors ([FS12]), who gave quasipolynomial size hitting sets for the class of read-once oblivious algebraic branching programs (ROABPs). This gives the desired explicit Noether Normalization unconditionally, up to quasipolynomial factors.

As a consequence of our proof we give a deterministic parallel polynomial-time algorithm for deciding if two matrix tuples have intersecting orbit closures, under simultaneous conjugation.

Finally, we consider the depth-3 diagonal circuit model as defined by Saxena [Sax08], as PIT algorithms for this model also have implications in Mulmuley’s work. Previous works (such as [ASS13] and [FS12]) have given quasipolynomial size hitting sets for this model. In this work, we give a much simpler construction of such hitting sets, using techniques of Shpilka and Volkovich [SV09].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Joglekar, P.S., Srinivasan, S.: Arithmetic Circuits and the Hadamard Product of Polynomials. In: FSTTCS, pp. 25–36 (2009)

    Google Scholar 

  2. Agrawal, M., Saha, C., Saxena, N.: Quasi-polynomial hitting-set for set-depth-Δ formulas.. Electronic Colloquium on Computational Complexity (ECCC) 19(113) (2012)

    Google Scholar 

  3. Agrawal, M., Saha, C., Saxena, N.: Quasi-polynomial hitting-set for set-depth-Δ formulas. In: STOC, pp. 321–330. Full version in [ASS12] (2013)

    Google Scholar 

  4. Belitskiĭ, G.R.: Normal forms in a space of matrices. In: Analysis in Infinite-dimensional Spaces and Operator Theory, pp. 3–15 (1983) (in Russian)

    Google Scholar 

  5. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett. 18(3), 147–150 (1984)

    Google Scholar 

  6. Chistov, A.L., Ivanyos, G., Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 68–74 (1997)

    Google Scholar 

  7. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  8. Derksen, H., Kemper, G.: Computational invariant theory. In: Invariant Theory and Algebraic Transformation Groups, I. Springer, Berlin (2002); Encyclopaedia of Mathematical Sciences, vol. 130

    Google Scholar 

  9. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978)

    Article  MATH  Google Scholar 

  10. Formanek, E.: Generating the ring of matrix invariants. In: Ring theory (Antwerp, 1985). Lecture Notes in Math., vol. 1197, pp. 73–82. Springer, Berlin (1986)

    Chapter  Google Scholar 

  11. Forbes, M.A., Shpilka, A.: Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. Electronic Colloquium on Computational Complexity (ECCC) 19, 115 (2012)

    Google Scholar 

  12. Forbes, M.A., Shpilka, A.: Explicit noether normalization for simultaneous conjugation via polynomial identity testing. Electronic Colloquium on Computational Complexity (ECCC) 20, 33 (2013)

    Google Scholar 

  13. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: A chasm at depth three. Electronic Colloquium on Computational Complexity (ECCC) 20(26) (2013)

    Google Scholar 

  14. Grochow, J.: Private communication (2013)

    Google Scholar 

  15. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci. 65(4), 672–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: STOC, pp. 220–229 (1997)

    Google Scholar 

  17. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kraft, H., Procesi, C.: Classical invariant theory, a primer. Lecture Notes (2000)

    Google Scholar 

  19. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn., vol. 34. Springer, Berlin (1994)

    Google Scholar 

  20. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. in Math. 46(3), 305–329 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Malod, G., Portier, N.: Characterizing valiant’s algebraic complexity classes. J. Complexity 24(1), 16–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma. In: FOCS, pp. 629–638 (2012)

    Google Scholar 

  23. Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma. arXiv, abs/1209.5993 (2012); Full version of the FOCS 2012 paper

    Google Scholar 

  24. Mulmuley, K.: Geometric complexity theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether’s normalization lemma (2012), http://techtalks.tv/talks/geometric-complexity-theory-v-equivalence-between-blackbox-derandomization-of-polynomial-identity-testing-and-derandomization-of/57829/

  25. Nisan, N.: Lower bounds for non-commutative computation. In: STOC, pp. 410–418 (1991)

    Google Scholar 

  26. Procesi, C.: The invariant theory of n×n matrices. Advances in Math. 19(3), 306–381 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Razmyslov, J.P.: Identities with trace in full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat. 38, 723–756 (1974)

    MathSciNet  Google Scholar 

  28. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Computational Complexity 14(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sergeichuk, V.V.: Canonical matrices for linear matrix problems. Linear Algebra Appl. 317(1-3), 53–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saha, C., Saptharishi, R., Saxena, N.: A Case of Depth-3 Identity Testing, Sparse Factorization and Duality. Computational Complexity 22(1), 39–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once formulas. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 700–713. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388 (2010)

    Article  MathSciNet  Google Scholar 

  35. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979)

    Google Scholar 

  36. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forbes, M.A., Shpilka, A. (2013). Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics