
Scheduling Subset Tests:
One-time, Continuous, and How They Relate

Edith Cohen1,2, Haim Kaplan2, and Yishay Mansour1,2

edith@cohenwang.com {haimk,mansour}@cs.tau.ac.il

1 Microsoft Research
2 Tel Aviv University, Israel

Abstract. A test scheduling instance is specified by a set of elements, a set of
tests, which are subsets of elements, and numeric priorities assigned to elements.
The schedule is a sequence of test invokations with the goal of covering all ele-
ments. This formulation had been used to model problems in multiple application
domains from network failure detection to broadcast scheduling. The modeling
considered both SUMe and MAXe objectives, which correspond to average or
worst-case cover times over elements (weighted by priority), and both one-time
testing, where the goal is to detect if a fault is currently present, and continuous
testing, performed in the background in order to detect presence of failures soon
after they occur. Since all variants are NP hard, the focus is on approximations.
We present combinatorial approximations algorithms for both SUMe and MAXe

objectives on continuous and MAXe on one-time schedules. The approxima-
tion ratios we obtain depend logarithmically on the number of elements and
significantly improve over previous results. Moreover, our unified treatment of
SUMe and MAXe objectives facilitates simultaneous approximation with respect
to both.
Since one-time and continuous testing can be viable alternatives, we study the
overhead of continuous testing, captured by the ratio of optimal one-time to con-
tinuous cover times. We establish that the worst-case ratio is O(logn), but also
provide evidence, by considering Zipf distributions, that the typical ratio is lower.

1 Introduction
An instance (E,S,p) of a test scheduling problem is specified by a set E of elements,
a set S of tests, where each test is a subset of elements E, and priorities pe over el-
ements e ∈ E. An invokation of s ∈ S tests all elements included in the set s. We
seek schedules, which are sequences of tests, which cover the elements as efficiently as
possible.

We distinguish between SUMe objectives, which minimize the prioritized sum of
cover times of individual elements and MAXe objectives, which minimize the (weighted
by priority) worst-off cover time of an element. Operationally, we distinguish between
continuous testing, performed as a background process and appropriate when failures
of elements may occur any time and we would like to detect the failure soon after it
occurs, and one-time testing, where the goal is to detect if an existing fault is present by
initiating a sequence of tests.



2

This formulation naturally extends the classic set cover problem and had been used
to model problems arising in different application domains. Since all variants are NP-
complete, the focus is on designing approximation algorithms.

A recently studied application is silent failure detection in networks [14, 12, 13, 6]:
Elements correspond to physical or logical network elements (links, nodes, or forward-
ing rules in the software defined network) and tests corresponding to routing paths.
Invoking a test translated to sending a probe packet. Once a failure is detected, heavy-
weight tools are applied to bypass or localize and correct it.

The special case of singletons, where each test contains a single element, was ex-
tensively studied in the context of scheduling Teletext [2], broadcast disks [1, 10, 3, 3,
3, 4], and search in unstructured p2p networks [7].

One-time schedules of subset tests with respect to SUMe objectives were studied
by Feige et al [9], who gave a 4-approximation algorithm (and matching inapproxima-
bility result) (see also [5]). We recently studied continuous schedules [6], and related
stochastic and deterministic schedules and presented deterministic approximation algo-
rithms based on derandomizing optimal memoryless schedules (memoryless schedules
are a subclass of stochastic schedules which can be optimized by an LP or convex pro-
grams). Our work here builds on the results in [9, 6] which are discussed in more detail
in Section 2.

Contributions: We present novel combinatorial approximation algorithms for deter-
ministic schedules with approximation factors O(log2 n) for MAXe and O(log n) for
SUMe on continuous schedules and O(log n) for MAXe on one-time schedules (Sec-
tion 3 and Section 5), where n = |E|. These ratios significantly improve over previous
results [6] with approximation ratios that depend logarithmically on the number of tests
containing an element, which can be exponential in the number of elements. Indeed,
experimentally in [6] we observed that we needed to artificially restrict the set of tests
to obtain good schedules using the previous approaches.

In some contexts, including network testing, both one-time or continuous testing are
applicable, and to support informed choice, we aim to understand their relation (Section
4). Clearly, the one-time optimum of an objective is never larger than the continuous
optimum, and we therefore study the ratio of continuous to one-time optima. This ratio
capture the overhead of continuous testing. We show that this ratio is at most logarith-
mic in the number of elements, for both SUMe and MAXe objectives. While we also
show that our upper bound on the ratio are tight, in the sense that some families of
instances have logarithmic ratios, we also give indications, by analyzing the ratio for
Pareto distributed priorities, that in practice the ratio is typically lower.

Lastly, in Section 5 we expand on implications of our unified study, showing how to
obtain continuous schedules from one-time schedules and explain how to concurrently
approximate both SUMe and MAXe objectives.

2 Preliminaries

A testing schedule is a sequence σ of tests. The sequence is infinite for continuous
testing and finite for one-time testing.



3

The cover time T (e, t|σ) = min{∆ ≥ 0 | e ∈ σ∆+t} of element e at time t by
the schedule σ is the elapsed time (number of positions in the sequence) after position
t until a test that includes e is invoked.

We follow notation from [6]. For an element e, Mt[e|σ] is the maximum over time t
of the cover time of e at time t, and Et[e|σ] is the (limit of) the average over time t of the
cover time of e at time t. For a time t, Me[t|σ] = maxe peT (e, t|σ) is the (weighted)
maximum over elements and Ee[t|σ] =

∑
e peT (e, t|σ) is the weighted sum over the

elements of the cover time of e at t. The weighting, in both cases, is according to the
priorities p. When clear from context, we omit the reference to the schedule σ in the
notation.

We study two natural objectives: MAXe, which aim to minimize the (weighted)
maximum over elements and SUMe, which aim to minimize a weighted sum over ele-
ments. For convenience, with MAXe objectives we assume priorities are scaled so that
the maximum entry is 1 and with SUMe, they are normalized so that the sum of entries
is 1. With this normalization, when p is a probability distribution over elements, SUMe

is the expected time to cover an element that is selected according to the distribution.
For concreteness, we use the fault detection application for describing objectives in the
sequel. We append the prefix opt to an objective to denote the optimum of the objective
on the instance.

A schedule is stochastic, when the sequence is a random variable. With stochastic
schedules, we redefine T (e, t|σ) to be the expected number of steps until e is covered
[6].

2.1 One-time testing

One-time testing checks for presence of a failed element. The schedule is executed
until either a test detects the presence of a faulty element or to termination, if no fault
is present. For element e, T (e, 0|σ) = min{j | e ∈ σj} is the cover time of e. The
one-time SUMe and MAXe are

SUMe: =
∑
e

peT (e, 0|σ)

MAXe: = max
e
peT (e, 0|σ) .

An optimal deterministic one-time schedule never performs a particular test more
than once, since only the first occurrence is significant and other occurrences, if any, can
only extend the coverage time of yet uncovered elements. Moreover, each test should
contain at least one previously uncovered element, and therefore, an optimal schedule
has length at most n = |E|. Moreover, there is no advantage in using a stochastic
schedule, because the expected times Ee[0|σ] or Me[0|σ] of a stochastic schedule are
the expectation of the objective over the corresponding distribution of deterministic
schedules, so there is always a deterministic schedule with objective that is at most that
expectation.

Singleton instances are fully specified by the assignment of priorities p to elements
(tests). Both objectives Ee[0] and Me[0] are minimized by the schedule that tests ele-
ments in order of decreasing priority pi. Assuming elements are indexed by decreasing



4

priority p1 ≥ · · · ≥ pn, the optimal cover times are

opt-Ee[0](p) =
n∑
i=1

ipi (1)

opt-Me[0](p) = max
i∈[n]

ipi . (2)

Subset tests: We summarize previous results for Ee[0] and Me[0], which establish NP
hardness and approximability.
SUMe: For Ee[0], a simple greedy algorithm which sequentially selects the test that
covers a set of uncovered elements with maximum sum of priorities has opt-Ee[0] that
is at most 4 times the optimal [9] (see also [5]). The problem of minimizing Ee[0] (or
approximating within factor of 4− ε for any positive ε > 0) is NP hard [9].
MAXe: When priorities are uniform, optimizing Me[0] is equivalent to computing a
minimum set cover: The optimal Me[0] is the size of the minimum cover. From hardness
of approximation of set cover, Me[0] is hard to approximate within anything better than
a lnn ratio [8]. When priorities are uniform, the greedy set cover algorithm guarantees
a schedule with approximation ratio of lnn for Me[0].

2.2 Continuous testing

We summarize our model and relevant results from[6]. The distinction between stochas-
tic and deterministic schedules is important with continuous testing, as stochastic cover
times can be lower. Optimizing MAXe and SUMe over either stochastic or determin-
istic schedules is NP-hard. We defined, however, a subclass of stochastic schedules,
which we named memoryless schedules. Memoryless schedules are specified by a dis-
tribution q on tests, so that at each time, the invoked test is selected according to q
(independently of history). For a schedule/distribution q, SUMe[q] =

∑
e pe/Qe and

MAXe[q] = maxe pe/Qe, where Qe =
∑
i|e∈si qi. Optimal memoryless cover times,

with respect to either SUMe and MAXe, are at most twice the optimal stochastic ones.
Moreover, optimal memoryless schedules can be computed efficiently, via Linear Pro-
grams (MAXe) or convex programs (SUMe). With continuous schedules, we use opt
without subscript for the optimum of the objective over stochastic schedules, whereas
optM or optD, respectively, denotes a restriction to deterministic or memoryless (special
case of schedules.

For singleton instances, the optimal memoryless schedule has frequencies qe ∝ pe
(qi = pi/

∑
e pe) to optimize MAXe and qe ∝

√
pe (qi =

√
pi/
∑
e

√
pe) to optimize

SUMe [11]. The respective optima are

optM -MAXe[p] = max
e

pe
qe

=
∑
e

pe (3)

optM -SUMe[p] =
∑
e

pe
qe

= (
∑
e

√
pe)

2 . (4)

With deterministic schedules, we further distinguish objectives within each of SUMe

and MAXe, according to the dependence on time. There are three SUMe objective,
which from strongest to weakest are EeMt[σ], the weighted sum over elements e of the



5

maximum over time t of detection time T (e, t), MtEe[σ], the maximum over time of
the weighted sum over e, and EeEt[σ], the weighted sum over elements of the average
over time. There are also three MAXe objectives, which in order of strongest to weak-
est are MeMt[σ], the weighted maximum over elements of the maximum over time of
the detection time. MeEt[σ], the weighted maximum over elements of the average over
time, and EtMe[σ], the average over time of the maximum element at that time.

The optimum of all deterministic objectives is always at least 1/2 of the respective
memoryless optimum but the two stronger objectives in each category are at least the
memoryless optimum. For the stronger objectives, there are asymptotically large ratios
of the deterministic to memoryless optima.

Theorem 1. [6] Given a memoryless schedule specified by frequencies q, we can effi-
ciently construct a deterministic schedule σ with either

EeEt[σ] = SUMe[q] and EtMe[σ] = MAXe[q]

EeMt[σ] = O(log `)SUMe[q] and MeMt[σ] = O(log n+ log `)MAXe[q]

where ` is the maximum over elements of the number of tests which include the element.

As we noted in the introduction, ` can be exponential in the number of elements n.
Our focus in this paper is on the stronger deterministic objectives, the EeMt and the
MeMt, for which we present approximation algorithms with logarithmic dependence
on n rather than `. We use the following in our constructions of continuous schedules:

Lemma 1. [3, 6] For given frequencies q, we can always construct a deterministic
schedule so that the interval between invokations of test i is at most 2/qi. ut

The deterministic schedule is obtained by rounding frequencies down to integral powers
of 2: q′i ← 2−dlog2 qie. A set of frequencies that are integral powers of 2 that sum to at
most 1 can be optimally scheduled so that each test is invoked with a period of at most
1/qi [3, 6].

3 MAXe schedulers
We present a O(log n) approximation for one-time MAXe scheduling and O(log2 n)
approximation for continuous deterministic MeMt scheduling. Both algorithms use the
same partition over the elements: Assuming priorities are scaled so that the largest pri-
ority is equal to 1, elements are partitioned according to the value of b− log2 pec, so that
the set Ei for i ≥ 0 contains all elements for which b− log2 pec = i. We then compute
a (greedy) set cover Ci for each set Ei. Pseudo code for computing the partition and
covers is in Algorithm 1.

The one-time final schedule σ is a concatenation of the set covers Ci by increasing
i ≥ 0. See ONETIMEMAXSCHEDULE in Algorithm 2 for pseudocode.

Theorem 2. Consider the one-time schedule σ computed by ONETIMEMAXSCHED-
ULE when the covers in PARTITIONP2 are computed using the greedy set cover algo-
rithm. Then

Me[0|σ] ≤ O(ln |n|)opt-Me[0] .



6

Algorithm 1 Partition elements by powers-of-2
1: function PARTITIONP2(p, E)
2: p← p/max(p) . Scale p so that the maximum priority is 1.
3: for i ≥ 0 do
4: Ei ← {e | pe ∈ (2−(i+1), 2−i]} . Partition E according to priorities
5: U ← ∅
6: for i ≥ 0 do
7: Ei ← Ei \ U . remove elements already covered by higher-priority tests
8: Ci ←SET-COVER(Ei,S)
9: U ← U ∪ {elements covered by Ci}

return p,E,C

Proof. We first upper bound the optimum:

opt-Me[0] ≤ Me[0|σ] ≤ max
e
pe

∑
j≤b− log2 pec

|Ci| ≤ max
i≥0

2−i
∑
j≤i

|Ci| (5)

We now lower bound the optimum:

opt-Me[0] ≥ max
e

pe|OPT-COVER{h ∈ E | ph ≥ pe}|

≥ max
i

2−(i+1) max
j≤i
|OPT-COVER{Ej}| ≥ max

i≥0
2−(i+1)|OPT-COVER{Ei}| (6)

≥ max
i≥0

2−(i+1) |Ci|
ln |Ei|

≥ 1

2 lnn
max
i≥0

2−i|Ci| (7)

To verify (7), note that a lower bound on opt-Me[0] is the maximum over elements e
of the product of pe by the size of the minimal set cover of all elements with priority at
most pe. For e ∈ Ei, this is lower bounded by 2−(i+1) (the lowest possible priority of a
member of Ei) times the size of the minimum set cover of ni, which is lower bounded
in turn by the size of the greedy cover |Ci| divided by the worst-case approximation
ratio ln |Ei|.

Combining (5) and (7), to conclude the proof it suffices to establish

max
i

2−i
∑
j≤i

|Cj | ≤ 2max
i

2−i|Ci| . (8)

Let k be i which maximizes 2−i
∑
j≤i |Cj |. From our choice of k,

2−k
∑
j≤k

|Cj | ≥ 2−k+1
∑
j≤k−1

|Cj | . (9)

We expand and substitute (9) to obtain

2−k
∑
j≤k

|Cj | = (1/2)

(
2−k+1

∑
j≤k−1

|Cj |
)
+ 2−k|Ck|

≤ (1/2)

(
2−k

∑
j≤k

|Cj |
)
+ 2−k|Ck| (10)



7

Therefore,

2−k
∑
j≤k

|Cj | ≤ 2−k+1|Ck| =⇒ |Ck| ≥
∑
j≤k−1

|Cj | . (11)

We are now ready to establish (8), using (11):

max
i

2−i
∑
j≤i

|Cj | = 2−k
∑
j≤k

|Cj | ≤ 2 · 2−k|Ck| ≤ 2max
i

2−i|Ci| .

ut

Algorithm 2 One-Time and Continuous schedules for MAXe
1: function ONETIMEMAXSCHEDULE(p, E)
2: (p,E,C)←PARTITIONP2(p, E)
3: σ ← C1, C2, . . .
4: return σ
5: function CONTMAXSCHEDULE(p, E)
6: (p,E,C)←PARTITIONP2(p, E)
7: for i ≥ 0 do
8: for s ∈ Ci do
9: q[s]← 2−i

10: return CONTSINGLETONSCHEDULE ( q∑
i q[i]

) . Return a schedule according to
specified frequencies as in Lemma 1

To obtain a continuous schedule σ (Pseudocode CONTMAXSCHEDULE in Algo-
rithm 2), we first compute the partition and covers (PARTITIONP2 in Algorithm 1, using
the greedy set cover algorithm). For all i, we assign frequencies 2−i to the tests partici-
pating in the cover Ci and normalize so that the sum of frequencies is 1. The schedule
is obtained by applying Lemma 1.

Theorem 3. The schedule σ computed by CONTMAXSCHEDULE satisfies

MeMt[σ] ≤ O(ln2 n)optD-MeMt .

The proof of the Theorem uses the following Lemma:

Lemma 2.
MeMt[σ] ≤ 2

∑
j≥0

2−j |Cj | , (12)

where C is the set of covers returned by PARTITIONP2 (Algorithm 1)

Proof. Consider the normalization of q in line 10. The sum of qi before normalization
is
∑
i 2
−i|Ci|, and thus the final frequency of tests in Ci are 2−i∑

i 2
−i|Ci| . Consider an

element e ∈ Ei. It is covered by a test s in Cj for some j ≤ i with frequency at least
q[s] ≡ 2−i/

∑
i 2
−i|Ci|. The scheduleσ invokes s at least every 2q[s] steps (Lemma 1).

Therefore, Mt[e] ≤ 2pe/q[s] ≤ 2 · 2−i
∑
j≥0 2

−j |Cj |/2−i = 2
∑
j≥0 2

−j |Cj |. ut



8

We can now proceed to the proof of Theorem 3. The optimum optD-MeMt is lower
bounded by the smallest priority in the set Ei times the size of the optimal set cover of
Ei. We obtain the same lower bound we used for one-time schedules (7) in the proof of
Theorem 2:

optD-MeMt ≥ max
i≥0

2−(i+1)|OPT-COVER{Ei}|

≥ max
i≥0

2−(i+1)|Ci|/ ln(|Ei|) ≥
1

2 ln(n)
max
i≥0

2−i|Ci| . (13)

By combining the upper bound in Lemma 2 and the lower bound (13), we obtain
that to establish the approximation ratio of O(log2 n), it suffices to show that for some
fixed constant k, ∑

j≥0

2−j |Cj | ≤ k log(n)max
j≥0

2−j |Cj | . (14)

To establish (14), we consider the sequence |Ci|, marking selected positions. We
mark C0 and then mark Ci if |Ci| > 1.5|Cj |, where Cj is the previously marked item.
The number of marked positions is ≤ log1.5 n. This is because for all i, |Ci| ≤ |Ei| ≤
n. Consider now two consecutive marked items Ch and Ch′ where h′ > h. We have
that |Cj | ≤ 1.5|Ch| for every j ∈ [h, h′). Therefore,

∑h′−1
j=h 2−j |Cj | ≤ 3 · 2−h|Ch|.

Summing over the entire sequence we get that∑
j≥0

2−j |Cj | ≤ 3 log1.5 nmaxj 2
−j |Cj | ≤ 6 log2 nmaxj 2

−j |Cj | . (15)

4 Relating One-time and Continuous Testing
We study the ratio of optimal continuous to optimal one-time cover times and provide
both upper and lower bounds, for both the SUMe and MAXe objectives. We show that
the stochastic optimum is within O(lnm) of the one-time optimum, where m is the
number of tests in the optimal one-time schedule. Therefore, the upper bounds holds
also for the weaker memoryless optM and deterministic optima optD.

Our lower bounds use a family of instances where instance Im has m tests, where
the ratio of optM to the one-time optimum for instance Im isHm, whereHi =

∑i
j=1 1/j

is the ith Harmonic number. This implies a logarithmic lower bound on the ratio also
for the stochastic and deterministic objectives.

We first observe that on a given instance, the optimal one-time cover time can be at
most the respective optimum by a continuous schedule:

Lemma 3. On any instance I = (E,S,p),

opt-Ee[0](I) ≤ opt-SUMe(I)

opt-Me[0](I) ≤ opt-MAXe(I)

Proof. Draw an optimal continuous stochastic schedule and generate a deterministic
one-time schedule by running it starting at t. With at least a fixed probability, on most
drawings/times t, the values Ee[t] (respectively Me[t]) are at most their expectation
(EeEt and EtMe, respectively). ut



9

4.1 Ratio for SUMe

Theorem 4. On any instance I = (E,S,p),

optM -SUMe(I) ≤ ln(m)opt-Ee[0](I) (16)
optD-EeMt(I) ≤ 2 ln(m)opt-Ee[0](I) (17)

where m is the number of tests in the optimal one-time schedule. Moreover, there is a
family of instances Ii (i ≥ 1), where instance Ii has i tests, for which

optM -SUMe(Im)

opt-Ee[0](Im)
= ln(m) +O(1) .

Proof. Given a one-time schedule σ = s1, . . . , sm with m tests, we construct a mem-
oryless schedule q so that SUMe[q] is at most lnm times Ee[0|σ]. The memoryless
schedule q invokes test si with frequency qi = 1

iHm
. For any element e,

Mt[e|q] =
1∑

i|e∈si qi
≤ 1

qmin{i|e∈si}
= Hmmin{i|e ∈ si} .

To establish (16), we can see that SUMe[q], which must be at least optM -SUMe, is

SUMe[q] =
∑
e

peMt[e|q] ≤ Hm

∑
e

pemin{i|e ∈ si} = HmEe[0|σ] ≤ ln(m)Ee[0|σ] .

To establish (17), we construct a deterministic continuous schedule σ′ by applying
Lemma 1 with respect to frequencies qi for si. The resulting schedule invokes si at least
every 2−dlog2(iHm)e steps. We obtain that for any e,

Mt[e|σ′] ≤ 2/ max
i|e∈si

qi ≤ 2/qmin{i|e∈si} = 2Hmmin{i|e ∈ si} .

Therefore,

EeMt[σ
′] =

∑
e

peMt[e|σ′] ≤ 2
∑
e

peHmmin{i|e ∈ si} = 2HmEe[0|σ] .

We now establish the second claim. For each m > 1, we construct a singletons in-
stance Im withm tests/elements with priorities pi = 1

i2
1
Sm

, where Sm =
∑m
j=1 1/i

2 ≤
π2/6. The optimum Ee[0] for this instance is attained by invoking tests by decreasing
pi and according to (1), has:

opt-Ee[0](Im) =
∑
i

ipi = Hm/Sm . (18)

The optimal memoryless SUMe for Im has square-root frequencies (4) qi = 1/(iHm):

optM -SUMe(p) = (
∑
e

√
pe)

2 = H2
m/Sm . (19)

Combining (18) and (19), we get the relation optM -SUMe(Im)
opt-Ee[0](Im) = Hm. ut



10

4.2 Ratio for MAXe

Theorem 5. On any instance I = (E,S,p),

optD-MeMt(I) ≤ O(ln(m))opt-Me[0](I) (20)

where m is the number of tests in the optimal one-time sequence. Moreover, there is a
family of instances Ii (i ≥ 1), where instance Ii has i tests, for which

optM -MAXe(Im)

opt-Me[0](Im)
= ln(m) +O(1) .

Proof. Consider the output of PARTITIONP2 (Algorithm 1) when used with an optimal
set cover subroutine. From (6), we obtain the lower bound:

opt-Me[0] ≥ max
e
pe|OPT-COVER{h ∈ E | ph ≥ pe}| ≥ max

i
2−(i+1)|Ci| . (21)

Consider a continuous schedule σ computed by CONTMAXSCHEDULE (Algorithm
2) when PARTITIONP2 (Algorithm 1) is used with an optimal set cover subroutine.
From Lemma 2, we have

MeMt[σ] ≤ 2
∑
j≥0

2−j |Cj |

Using (15) we have

optD-MeMt

opt-Me[0]
=

2
∑
j≥0 2

−j |Cj |
maxi 2−(i+1)|Ci|

≤ 6 log2 n .

which establishes claim (20).
We construct a family of singletons instances, where instance In has n elements/tests,

where element i has priority pi = 1/i. The optimal one-time schedule includes tests by
decreasing priority pi and according to (2) has opt-Me[0](In) = maxi ipi = 1. The op-
timal memoryless schedule uses qi ∝ pi and from (3) has optM -MAXe(In) =

∑
i pi =

Hn. ut

4.3 Singletons with Pareto Priorities

We study the ratio for singleton instances with Pareto priorities. The instance Im,α is
specified by the number of elements/tests m and the parameter α, where the priority of
element i is pi ∝ i−α.

We established that a ratio of ln(m) + O(1) for SUMe is attained with α = 2 and
for MAXe with α = 1.

We first consider SUMe for α 6= 2, using the expressions (1) and (4) for the one-
time and memoryless optima:

optM -SUMe(Im,α)

opt-Ee[0](Im,α)
=

(
∑
i

√
pi)

2∑
i ipi

≈
(
∫m
1
x−α/2dx)2∫m

1
x1−αdx

=
( 2
2−α (m

1−α/2 − 1))2

1
2−α (m

2−α − 1)
=

4

2− α
m2−α + 1− 2m1−α/2

m2−α − 1
.



11

The ratio is asymptotically 4/(2− α) when α < 2 and 4/(α− 2) for α > 2.
We similarly consider MAXe for α = 1, using the expressions (2) and (3) for the

one-time and memoryless optima:

optM -MAXe(Im,α)
opt-Me[0](Im,α)

=
maxi ipi∑

e pe
≈ maxi i

1−α∫m
1
x−αdx

= (1− α)maxi i
1−α

m1−α − 1

The one-time optimum is maxi i
1−α = 1 (realized for i = 1) when α > 1, and is

maxi ipi = m1−α (realized for i = m) when α > 1. The memoryless (continuous)
optimum is (m1−α − 1)/(1 − α) for α < 1 and ≈ 1/(α − 1) for α > 1. Combining
the ratio, asymptotically, is ≈ α− 1 for α > 1 and ≈ 1− α for α < 1.

Interestingly, the SUMe ratio is constant for all α 6= 2 and the MAXe ratio is
constant for α 6= 1.

5 More on continuous scheduling
5.1 SUMe continuous schedulers

The proof of (17) in Theorem 4 provides a construction of a continuous schedule from a
one-time schedule, so that the EeMt of the resulting schedule is at most O(log n) times
Ee[0] of the one-time schedule. Combining this with one-time optimal cover times being
at most the respective continuous ones, and with existence of4-approximate one-time
schedulers [9, 5], we obtain the following:

Lemma 4. There is anO(log n)-approximation algorithm for EeMt deterministic schedul-
ing.

To obtain the continuous schedule, we first construct a 4-approximate one-time sched-
ule [9, 5] with m tests. We then assign frequency 1/(iHm) to the ith test. Lastly, we
construct a deterministic schedule according to these frequencies using Lemma 1.

5.2 Choose-` continuous testing

To better understand our continuous schedulers, the one in Lemma 4 for SUMe and
CONTMAXSCHEDULE (in Algorithm 2) for MAXe, we define a natural restriction of
continuous scheduling, where each element has to commit to at most ` of the tests which
include it. Only the selected tests may cover e at run time. Clearly, choose-` optimum
is at most the choose-h optimum when ` > h. Continuous scheduling as we defined
it is choose-∞ (or choose-|S|) and the most restricted is choose-1. We now note that
our results on the approximation ratio of the schedulers and the ratio between optimal
continuous and one-time schedules actually hold for choose-1 continuous testing. This
implies at most an O(log n) ratio between the optima of choose-1 and choose-∞ con-
tinuous testing. We present a family of instances where the ratio is Ω(log n), showing
that this is tight. Our instances correspond to complete binary trees, with elements cor-
responding to nodes and each tests to a root to leaf paths. Each path is labeled by the
bit string of the position of the leaf. The priority of element at level i is ∝ 2−i. The
optimal choose-∞ schedule chooses paths in reverse bit order of the leaf labels. This
schedule covers a level i node every 2i steps and optimizes both SUMe and MAXe. The
choose-1 optimum, however, must be logarithmically larger.



12

5.3 Improved EeMt scheduler

We improve on the SUMe scheduler in Lemma 4 by optimally assigning test frequencies
for the underlying choose-1 assignment S(e) of elements to tests, which assigns each
element to the first test in the one-time schedule which covers it. We argue that for a
given mapping S, the frequency distribution on tests which optimizes choose-1 EeMt

is qi ∝
∑
e|S(e)=i pe. To see that, recall that we want to minimize

∑
e pe/qS(e). If

we define pi =
∑
e|S(e)=i pe, this is the same a singleton scheduling for pi which is

optimized by square-root frequencies (4).

5.4 Combinations of objectives

Our schedulers can be adjusted to concurrently approximate MAXe and SUMe objec-
tives. With one-time testing, we can simply interleave the two schedules which results
in at most a factor of 2 loss in the approximation quality. With continuous schedules, we
need to slightly adjust our algorithms to achieve that: Recall that our continuous sched-
ulers for MAXe and SUMe associate frequencies with tests and construct a schedule
from these frequencies. With two objectives, we take the test-wise maximum frequency
(and renormalize). This again results in loosing at most a factor of two in the approxi-
mation of each objective.

References
1. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: data management for

asymmetric communication environments. In ACM SIGMOD, 1995.
2. M. Ammar and J. Wong. On the optimality of cyclic transmission in teletext systems. IEEE

Tran. Communication, 35(1):68–73, 1987.
3. A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation costs of

periodic scheduling. Math. Oper. Res., 27(3):518–544, 2002.
4. A. Bar-Noy, V. Dreizin, and B. Patt-Shamir. Efficient algorithms for periodic scheduling.

Computer Networks, 45(2):155–173, 2004.
5. E. Cohen, A. Fiat, and H. Kaplan. Efficient sequences of trials. In Proc. 14th ACM-SIAM

Symposium on Discrete Algorithms, 2003.
6. E. Cohen, A. Hassidim, H. Kaplan, Y. Mansour, D. Raz, and Y. Tzur. Probe scheduling for

efficient detection of silent failures. Technical Report cs.NI/1302.0792, arXiv, 2013.
7. E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In

Proceedings of the ACM SIGCOMM’02 Conference, 2002.
8. U. Feige. A threshold of lnn for approximating set cover. J. Assoc. Comput. Mach., 45:634–

652, 1998.
9. U. Feige, L. Lovasz, and P. Tetali. Approximating min-sum set cover. In Proceedings of

5th International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), volume 2462 of LLNCS, pages 94–107. Springer, 2002.

10. S. Hameed and N. H. Vaidya. Log-time algorithms for scheduling single and multiple chan-
nel data broadcast. In Proc. of ACM/IEEE MobiCom, 1997.

11. L. Kleinrock. Queueing Systems, Volume II: Computer Applications. Wiley-Interscience,
New York, 1976.

12. H. X. Nguyen, R. Teixeira, P. Thiran, and C. Diot. Minimizing probing cost for detecting
interface failures: Algorithms and scalability analysis. In INFOCOM, 2009.

13. H. Zeng, P. Kazemian, G. Varghese, and N. McKeon. Automatic test packet generation. In
CONEXT, 2012.

14. Q. Zheng and G. Cao. Minimizing probing cost and achieving identifiability in probe based
network link monitoring. IEEE Tran. Computers, 2012. to appear.


