Abstract
Given an interval I = {1,2, ..., n} of points, a collection \(\mathcal I\) of subintervals of I and a fraction 0 ≤ r ≤ 1, we consider the following variation of partial set cover. We wish to find an optimal subset of \(\mathcal I\) covering at least an r-fraction of I. While this problem is easily solved exactly in quadratic time using classical methods, we focus on developing scalable algorithms which return near-optimal solutions and run in near-linear time. We give a (1 + ε)-approximation algorithm running in \(O(\frac{1}{\epsilon} \cdot\min \{n + |\mathcal I|, |\mathcal I| \log |\mathcal I|\}\})\) time. We also prove a tight approximation ratio of 2 for a simple greedy algorithm for this problem, improving on the bound of 9 given in [10].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Transactions on Algorithms (TALG) 2(2), 153–177 (2006)
Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. Journal of Algorithms 39(2), 137–144 (2001)
Bonchi, F., Castillo, C., Donato, D., Gionis, A.: Topical query decomposition. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 52–60. ACM, New York (2008)
Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)
Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill Higher Education (2001)
Cormode, G., Karloff, H., Wirth, A.: Set cover algorithms for very large datasets. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 479–488. ACM, New York (2010)
Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Survey: Covering problems in facility location: A review. Comput. Ind. Eng. 62(1), 368–407 (2012)
Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)
Gao, B.J., Ester, M., Cai, J.-Y., Schulte, O., Xiong, H.: The minimum consistent subset cover problem and its applications in data mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 310–319. ACM, New York (2007)
Golab, L., Karloff, H., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies. Proc. VLDB Endow. 2(1), 574–585 (2009)
Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal tableaux for conditional functional dependencies. Proc. VLDB Endow. 1(1), 376–390 (2008)
Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: Experimental analysis of approximation algorithms for the vertex cover and set covering problems. Comput. Oper. Res. 33(12), 3520–3534 (2006)
He, Z., Yang, C., Yu, W.: A Partial Set Covering Model for Protein Mixture Identification Using Mass Spectrometry Data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8(2), 368–380 (2011)
Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. J. Comput. System Sci. 9, 256–278 (1974)
Karp, R.M.: Reducibility among combinatorial problems. In: 50 Years of Integer Programming 1958-2008, pp. 219–241 (2010)
Kearns, M.J.: The computational complexity of machine learning. The MIT Press (1990)
Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)
Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 468–479. Springer, Heidelberg (2006)
Lovász, L.: On the Ratio of Optimal Integral and Fractional Covers. Discrete Mathematics 13, 383–390 (1975)
Mihail, M.: Set Cover with Requirements and Costs Evolving over Time. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 63–72. Springer, Heidelberg (1999)
Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 475–484. ACM, New York (1997)
Slavík, P.: A tight analysis of the greedy algorithm for set cover. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 435–441. ACM (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Edwards, K., Griffiths, S., Kennedy, W.S. (2013). Partial Interval Set Cover – Trade-Offs between Scalability and Optimality. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40328-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40327-9
Online ISBN: 978-3-642-40328-6
eBook Packages: Computer ScienceComputer Science (R0)