Abstract
Probabilistic abstract argumentation combines Dung’s abstract argumentation framework with probability theory to model uncertainty in argumentation. In this setting, we deal with the fundamental problem of computing the probability Pr sem(S) that a set S of arguments is an extension according to a semantics sem. We focus on three popular semantics (i.e., complete, grounded, and preferred) for which the state-of-the-art approach is that of estimating Pr sem(S) by using a Monte-Carlo simulation technique, as computing Pr sem(S) has been proved to be intractable. In this paper, we detect and exploit some properties of these semantics to devise a new Monte-Carlo simulation approach which is able to estimate Pr sem(S) using much fewer samples than the state-of-the-art approach, resulting in a significantly more efficient estimation technique.
The first two authors were supported by EJRM project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agresti, A., Coull, B.A.: Approximate is better than ”exact” for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)
Alsinet, T., Chesñevar, C.I., Godo, L., Sandri, S., Simari, G.R.: Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. Int. J. Approx. Reasoning 48(3) (2008)
Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems 159(10), 1208–1228 (2008)
Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1-3), 197–215 (2002)
Amgoud, L., Prade, H.: Reaching agreement through argumentation: A possibilistic approach. In: KR, pp. 175–182 (2004)
Amgoud, L., Vesic, S.: A new approach for preference-based argumentation frameworks. Ann. Math. Artif. Intell. 63(2), 149–183 (2011)
Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Argumentation in Artificial Intelligence, pp. 25–44 (2009)
Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)
Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10-15), 619–641 (2007)
Besnard, P., Hunter, A. (eds.): Elements Of Argumentation. The MIT Press (2008)
Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Weighted attacks in argumentation frameworks. In: KR (2012)
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)
Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10-15), 642–674 (2007)
Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. In: COMMA, pp. 171–182 (2010)
Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18) (2009)
Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175(2) (2011)
Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in Artificial Intelligence, pp. 85–104 (2009)
Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation. In: IJCAI (2013)
Hunter, A.: Some foundations for probabilistic abstract argumentation. In: COMMA, pp. 117–128 (2012)
Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approx. Reasoning 54(1), 47–81 (2013)
Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer, Heidelberg (2012)
Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9-10), 901–934 (2009)
Prakken, H.: An abstract framework for argumentation with structured arguments. Argument & Computation 1(2), 93–124 (2010)
Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer (2009)
Rienstra, T.: Towards a probabilistic dung-style argumentation system. In: AT, pp. 138–152 (2012)
Thimm, M.: A probabilistic semantics for abstract argumentation. In: ECAI, pp. 750–755 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fazzinga, B., Flesca, S., Parisi, F. (2013). Efficiently Estimating the Probability of Extensions in Abstract Argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds) Scalable Uncertainty Management. SUM 2013. Lecture Notes in Computer Science(), vol 8078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40381-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40381-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40380-4
Online ISBN: 978-3-642-40381-1
eBook Packages: Computer ScienceComputer Science (R0)