Abstract
Consensus clustering methodologies combine a set of partitions on the clustering ensemble providing a consensus partition. One of the drawbacks of the standard combination algorithms is that all the partitions of the ensemble have the same weight on the aggregation process. By making a differentiation among the partitions the quality of the consensus could be improved. In this paper we propose a novel formulation that tries to find a median-partition for the clustering ensemble process based on the evidence accumulation framework, but including a weighting mechanism that allows to differentiate the importance of the partitions of the ensemble in order to become more robust to noisy ensembles. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghosh, J., Acharya, A.: Cluster ensembles. WIREs Data Mining and Knowledge Discovery 1(4), 305–315 (2011)
Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. IJPRAI 25(3), 337–372 (2011)
Fred, A., Jain, A.: Combining multiple clustering using evidence accumulation. IEEE Trans Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. of Machine Learning Research 3 (2002)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Rota Bulò, S., Lourenço, A., Fred, A., Pelillo, M.: Pairwise probabilistic clustering using evidence accumulation. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 395–404. Springer, Heidelberg (2010)
Lourenço, A., Rota Bulò, S., Rebagliati, N., Fred, A., Figueiredo, M., Pelillo, M.: Probabilistic evidence accumulation for clustering ensembles. In: 2nd Int. Conf. on Pattern Recognition Applications and Methods, ICPRAM 2013 (2013)
Lourenço, A., Rota Bulò, S., Rebagliati, N., Fred, A., Figueiredo, M., Pelillo, M.: Consensus clustering using partial evidence accumulation. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 69–78. Springer, Heidelberg (2013)
Li, T., Ding, C.: Weighted Consensus Clustering. In: Proceedings of 2008 SIAM International Conference on Data Mining (SDM 2008) (2008)
Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)
Duarte, F.J.F., Fred, A.L.N., Rodrigues, F., Duarte, J.M.M., Lourenço, A.: Weighted evidence accumulation clustering using subsampling. In: Proceedings of the 6th International Workshop on Pattern Recognition in Information Systems, PRIS 2006, In conjunction with ICEIS, pp. 104–116 (2006)
Fern, X.Z., Lin, W.: Cluster ensemble selection. Stat. Anal. Data Min. 1(3), 128–141 (2008)
Vega-Pons, S., Correa-Morris, J., Ruiz-Shulcloper, J.: Weighted cluster ensemble using a kernel consensus function. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 195–202. Springer, Heidelberg (2008)
Azimi, J., Fern, X.: Adaptive cluster ensemble selection. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI 2009, pp. 992–997. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Hong, Y., Kwong, S., Wang, H., Ren, Q.: Resampling-based selective clustering ensembles. Pattern Recognition Letters 30(3), 298–305 (2009)
Jia, J., Xiao, X., Liu, B., Jiao, L.: Bagging-based spectral clustering ensemble selection. Pattern Recognition Letters 32(10), 1456–1467 (2011)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. of the Royal Stat. Society, Series B, 301–320 (2005)
Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall (1988)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856. MIT Press (2001)
Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lourenço, A., Rota Bulò, S., Fred, A., Pelillo, M. (2013). Consensus Clustering with Robust Evidence Accumulation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-40395-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40394-1
Online ISBN: 978-3-642-40395-8
eBook Packages: Computer ScienceComputer Science (R0)