Skip to main content

Error Analysis in Applying Fuzzy Logic Based Obstacle Avoidance Algorithm for Robot Soccer

  • Conference paper
Intelligent Robotics Systems: Inspiring the NEXT (FIRA 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 376))

Included in the following conference series:

Abstract

Obstacle avoidance is an important mode in robot soccer systems. The aim of obstacle avoidance is to ensure collision free in an environment with obstacles for the robot to move from its position to its desired target. This paper presents an error analysis on applying fuzzy logic based obstacles avoidance algorithm for robot soccer. The fuzzy sets are used to control the turning angle of the robot in order to avoid the obstacles in its path. The sets are developed based on two factors; a) the distance between the robot and the obstacle and b) the current orientation of the robot. The proposed algorithm is demonstrated in simulations and compared for several scenarios in experiments to evaluate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pratomo, A.H., Prabuwono, A.S., Zakaria, M.S., Omar, K., Nordin, M.J., Sahran, S., Abdullah, S.N.H.S., Heryanto, A.: Position and Obstacle Avoidance Algorithm in Robot Soccer. J. Comp. Sc. 6(2), 173–179 (2010)

    Article  Google Scholar 

  2. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(2), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lozano-Perez, T.: Spatial Planning: A Configuration Space Approach. IEEE Transactions on Computers 32(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  5. Koren, Y., Fitzgerald, Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: IEEE International Conference on Robotics and Automation, pp. 1398–1404 (1991)

    Google Scholar 

  6. Rimon, E., Koditschek, D.E.: Exact Robot Navigation Using Artificial Potential Functions. IEEE Transactions on Robotics and Automation 8(5), 501–518 (1992)

    Article  Google Scholar 

  7. Tang, L., Dian, S., Gu, G., Zhou, K., Wang, S., Feng, X.: A novel potential field method for obstacle avoidance and path planning of mobile robot. In: 3rd IEEE International Conference on In Computer Science and Information Technology (ICCSIT), pp. 633–637 (2010)

    Google Scholar 

  8. Zhang, Q., Chen, T., Chen, D.: An obstacle avoidance method of soccer robot based on evolutionary artificial potential field. Energy Procedia 16, 1792–1798 (2012)

    Article  Google Scholar 

  9. Yang, S.X., Meng, M.: An Efficient Neural Network Approach To Dynamic Robot Motion Planning. Neural Networks 13(2), 143–148 (2000)

    Article  Google Scholar 

  10. Dezfoulian, S.H., Wu, D., Ahmad, I.S.: A Generalized Neural Network Approach to Mobile Robot Navigation and Obstacle Avoidance. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 193, pp. 25–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Dutta, S.: Obstacle Avoidance of Mobile Robot Using PSO-based Neuro Fuzzy Technique. International Journal of Computer Science and Engineering 2, 301–304 (2010)

    Google Scholar 

  12. Jolly, K., Ravindran, K., Vijayakumar, R., Sreerama Kumar, R.: Intelligent decision making in multi-agent robot soccer system through compounded artificial neural networks. Robotics and Autonomous System 55(7), 589–596 (2007)

    Article  Google Scholar 

  13. Hu, Y., Yang, S.X.: A Knowledge Based Genetic Algorithm for Path Planning of a Mobile Robot. In: IEEE International Conference on Robotics and Automation, pp. 4350–4355 (2004)

    Google Scholar 

  14. Han, W.G., Baek, S.M., Kuc, T.Y.: Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots. In: IEEE International Conference on Computational Cybernatics and Simulation, pp. 2747–2751 (1997)

    Google Scholar 

  15. Simmons, R.G.: The curvature-velocity method for local obstacle avoidance. In: IEEE International Conference of Robotics and Automation, pp. 3375–3382 (1996)

    Google Scholar 

  16. Ko, N.Y., Simmons, R.G.: The lane-curvature method for local obstacle avoidance. In: Proceedings of the International Conference on Intelligent Robotics and Systems (1998)

    Google Scholar 

  17. Fernandez, J.L., Sanz, R., Benayas, J.A., Diéguez, A.R.: Improving collision avoidance for mobile robots in partially known environments: the beam curvature method. Robotics and Autonomous Systems 46(4), 205–221 (2004)

    Article  Google Scholar 

  18. Shi, C., Wang, Y., Yang, J.: A local obstacle avoidance method for mobile robots in partially known environment. Robotics and Autonomous Systems 58(5), 425–434 (2010)

    Article  Google Scholar 

  19. Kim, D.H., Kim, J.H.: A Real-time Limit-cycle Navigation Method for Fast Mobile Robots And Its Application To Robot Soccer. Robotics and Autonomous Systems 42(1), 17–30 (2003)

    Article  MATH  Google Scholar 

  20. Chen, Q., Ozguner, O.: Real-time navigation for autonomous vehicles: a fuzzy obstacle avoidance and goal approach algorithm. In: IEEE Conference Proceedings of the American Control, pp. 2153–2158 (2005)

    Google Scholar 

  21. Menon, A., Akmeliawati, R., Demidenko, S.: Towards a simple mobile robot with obstacle avoidance and target seeking capabilities using fuzzy logic. In: IEEE Conference Proceedings on Instrumentation and Measurement Technology (IMTC), pp. 1003–1008 (2008)

    Google Scholar 

  22. Jincong, Y., Xiuping, Z., Zhengyuan, N., Quanzhen, H.: Intelligent robot obstacle avoidance system based on fuzzy control. In: IEEE 1st International Conference on Information Science and Engineering (ICISE), pp. 3812–3815 (2009)

    Google Scholar 

  23. Dadios, E.P., Maravillas Jr., O.A.: Cooperative Mobile Robots With Obstacle And Collision Avoidance Using Fuzzy Logic. In: IEEE International Symposium on Intelligent Control, pp. 75–80 (2002)

    Google Scholar 

  24. Wai, R.J., Liu, C.M., Lin, Y.W.: Design of switching path-planning control for obstacle avoidance of mobile robot. Journal of the Franklin Institute 348(4), 718–737 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jameson, J., Sheikh Abdullah, S.N.H., Maluda, K.M. (2013). Error Analysis in Applying Fuzzy Logic Based Obstacle Avoidance Algorithm for Robot Soccer. In: Omar, K., et al. Intelligent Robotics Systems: Inspiring the NEXT. FIRA 2013. Communications in Computer and Information Science, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40409-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40409-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40408-5

  • Online ISBN: 978-3-642-40409-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics