Abstract
This paper describes the design of a multimodal spoken dialogue system using Markov Decision Processes (MDPs) to enable embodied conversational virtual health coach agents to deliver brief interventions for lifestyle behavior change - in particular excessive alcohol consumption. Its contribution is two fold. First, it is the first attempt to-date to study stochastic dialogue policy optimization techniques in the health dialogue domain. Second, it provides a model for longer branching dialogues (in terms of number of dialogue turns and number of slots) than the usual slot filling dialogue interactions currently available (e.g. tourist information domain). In addition, the model forms the basis for the generation of a richly annotated dialogue corpus, which is essential for applying optimization methods based on reinforcement learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mokdad, A.H., Marks, J.S., Stroup, D.F., Gerberding, J.L.: Actual causes of death in the united states, 2000. JAMA 291(10), 1238–1245 (2000)
Bouchery, E.E., Harwood, H.J., Sacks, J.J., Simon, C.J., Brewer, R.D.: Economic costs of excessive alcohol consumption in the U.S., 2006. American Journal of Preventive Medicine 41(5), 516–524 (2011)
Moyer, A., Finney, J.W., Swearingen, C.E., Vergun, P.: Brief interventions for alcohol problems: a meta-analytic review of controlled investigations in treatment-seeking and non-treatment-seeking populations. Addiction 97(3), 279–292 (2002)
Miller, W.R., Wilbourne, P.L.: Mesa grande: a methodological analysis of clinical trials of treatments for alcohol use disorders. Addiction 97(3), 265–277 (2002)
Babor, T.F., Grant, M.: Programme on substance abuse: project on identification and management of alcohol-related problems. Report on phase ii, an randomized clinical trial of brief interventions in primary health care (1992)
NIAAA: NIAAA Alcohol Alert No. 66: Brief interventions (2006)
Riper, H., Spek, V., Boon, B., Conijn, B., Kramer, J., Martin-Abello, K., Smit, F.: Effectiveness of e-self-help interventions for curbing adult problem drinking: A meta-analysis. J. Med. Internet Res. 13(2), e42 (2011)
White, A., Kavanagh, D., Stallman, H., Klein, B., Kay-Lambkin, F., Proudfoot, J., Drennan, J., Connor, J., Baker, A., Hines, E., Young, R.: Online alcohol interventions: A systematic review. J. Med. Internet Res. 12(5), e62 (2010)
Portnoy, D.B., Scott-Sheldon, L.A.J., Johnson, B.T., Carey, M.P.: Computer-delivered interventions for health promotion and behavioral risk reduction: a meta-analysis of 75 randomized controlled trials, 1988-2007. Preventive Medicine 47(1), 3–16 (2008)
Hester, R.K., Squires, D.D., Delaney, H.D.: The Drinker’s Check-up: 12-month outcomes of a controlled clinical trial of a stand-alone software program for problem drinkers. Journal of Substance Abuse Treatment 28(2), 159–169 (2005)
Mauriello, L.M., Gökbayrak, N.S., Marter, D.F.V., Paiva, A.L., Prochaska, J.M.: An Internet-Based Computer-Tailored Intervention to Promote Responsible Drinking: Findings from a Pilot Test with Employed Adults. Alcoholism Treatment 30(1), 1–15 (2011)
Lisetti, C., Yasavur, U., Leon, C.D., Amini, R., Rishe, N., Visser, U.: Building an On-demand Avatar-based Health Intervention for Behavior Change. FLAIRS (2012)
Cassell, J., Nakano, Y.I., Bickmore, T.W., Sidner, C.L., Rich, C.: Non-verbal cues for discourse structure. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, ACL 2001, pp. 114–123 (2001)
Moridis, C.N., Economides, A.A.: Affective Learning: Empathetic Agents with Emotional Facial and Tone of Voice Expressions. IEEE Transactions on Affective Computing 3(3), 260–272 (2012)
Lisetti, C., Yasavur, U., Leon, C.D., Amini, R.: Building an On-Demand Avatar-Based Health Intervention for Behavior Change. In: Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference (2012)
Schulman, D., Bickmore, T.W., Sidner, C.L.: An Intelligent Conversational Agent for Promoting Long-Term Health Behavior Change using Motivational Interviewing. In: Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium Series, pp. 61–64. Association for the Advancement of Artificial Intelligence (2011), http://www.aaai.org
Morbini, F., Forbell, E., DeVault, D., Sagae, K., Traum, D.R., Rizzo, A.A.: A mixed-initiative conversational dialogue system for healthcare. In: Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2012, pp. 137–139. Association for Computational Linguistics, Stroudsburg (2012)
Wang, N., Gratch, J.: Don’t just stare at me. In: CHI, Atlanta, GA, USA, pp. 1241–1249 (2010)
Kang, S.H., Gratch, J., Wang, N., Watt, J.: Does the contingency of agents’ nonverbal feedback affect users’ social anxiety? In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 1, pp. 120–127. International Foundation for Autonomous Agents and Multiagent Systems (2008)
NIAAA: Helping Patients Who Drink Too Much, A Clinician’s Guide (2007)
Bickmore, T.W., Schulman, D., Sidner, C.L.: A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. Journal of Biomedical Informatics 44(2), 183–197 (2011)
Ferguson, G., Quinn, J., Horwitz, C., Swift, M., Allen, J., Galescu, L.: Towards a Personal Health Management Assistant. Journal of Biomedical Informatics 43(5 suppl.), S13–S16 (2010)
Bickmore, T.W., Puskar, K., Schlenk, E.A., Pfeifer, L.M., Sereika, S.M.: Maintaining reality: Relational agents for antipsychotic medication adherence. Interacting with Computers 22(4), 276–288 (2010)
Ferguson, G., Allen, J., et al.: Trips: An integrated intelligent problem-solving assistant. In: Proceedings of the National Conference on Artificial Intelligence, pp. 567–573. John Wiley & Sons Ltd. (1998)
Bohus, D., Rudnicky, A.I.: The ravenclaw dialog management framework: Architecture and systems. Computer Speech & Language 23(3), 332–361 (2009)
Traum, D., Larsson, S.: The Information State Approach to Dialogue Management, pp. 325–353. Kluwer Academic Publishers (2003)
Bos, J., Klein, E., Lemon, O., Oka, T.: Dipper: Description and formalisation of an information-state update dialogue system architecture. In: 4th SIGdial Workshop on Discourse and Dialogue, pp. 115–124 (2003)
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. Cambridge Univ. Press (1998)
Lemon, O., Pietquin, O., et al.: Machine learning for spoken dialogue systems. In: Proceedings of the European Conference on Speech Communication and Technologies (Interspeech 2007), pp. 2685–2688 (2007)
Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system. Journal of Artificial Intelligence Research 16, 105–133 (2002)
Young, S., Gašić, M., Thomson, B., Williams, J.: Pomdp-based statistical spoken dialog systems: A review (2013)
Papangelis, A., Kouroupas, N., Karkaletsis, V., Makedon, F.: An adaptive dialogue system with online dialogue policy learning. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds.) SETN 2012. LNCS, vol. 7297, pp. 323–330. Springer, Heidelberg (2012)
Frampton, M., Lemon, O.: Recent research advances in reinforcement learning in spoken dialogue systems. Knowledge Engineering Review 24(4), 375–408 (2009)
Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K.: The hidden information state model: A practical framework for pomdp-based spoken dialogue management. Computer Speech & Language 24(2), 150–174 (2010)
Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter: Applying reinforcement learning to induce pedagogical tutorial tactics. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 224–234. Springer, Heidelberg (2010)
Walker, M.A., Passonneau, R., Boland, J.E.: Quantitative and qualitative evaluation of DARPA communicator spoken dialogue systems. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, ACL 2001, pp. 515–522. Association for Computational Linguistics, Stroudsburg (2001)
Georgila, K., Lemon, O., Henderson, J.: Automatic annotation of communicator dialogue data for learning dialogue strategies and user simulations. In: Ninth Workshop on the Semantics and Pragmatics of Dialogue (SEMDIAL: DIALOR). Citeseer (2005)
Frampton, M., Lemon, O.: Learning more effective dialogue strategies using limited dialogue move features. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 185–192. Association for Computational Linguistics (2006)
Ward, W.: Understanding spontaneous speech: the Phoenix system. In: Proceedings of the 1991 International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1991, pp. 365–367. IEEE Computer Society, Washington, DC (1991)
Yasavur, U., Amini, R., Lisetti, C., Rishe, N.: Ontology-based named entity recognizer for behavioral health. In: The Twenty-Sixth International FLAIRS Conference (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yasavur, U., Lisetti, C., Rishe, N. (2013). Modeling Brief Alcohol Intervention Dialogue with MDPs for Delivery by ECAs. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds) Intelligent Virtual Agents. IVA 2013. Lecture Notes in Computer Science(), vol 8108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40415-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-40415-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40414-6
Online ISBN: 978-3-642-40415-3
eBook Packages: Computer ScienceComputer Science (R0)