Skip to main content

FPTAS for Minimizing Earth Mover’s Distance under Rigid Transformations

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

In this paper, we consider the problem (denoted as EMDRT) of minimizing the earth mover’s distance between two sets of weighted points A and B in a fixed dimensional ℝd space under rigid transformation. EMDRT is an important problem in both theory and applications and has received considerable attentions in recent years. In this paper, we present the first FPTAS algorithm for EMDRT. Our algorithm runs roughly in O((nm)d + 2(lognm)2d) time which matches the order of magnitude of the degree of a lower bound for any PTAS of this problem, where n and m are the sizes of A and B, respectively. Our result is based on several new techniques, such as the Sequential Orthogonal Decomposition (SOD) and Optimum Guided Base (OGB). Our technique can also be extended to several related problems, such as the alignment problem, and achieves FPTAS for each of them.

This research was supported in part by NSF under grant IIS-1115220.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Guibas, L.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier, Amsterdam (1999)

    Google Scholar 

  2. Andoni, A., Indyk, P., Krauthgamer, R.: Earth mover distance over high-dimensional spaces. In: SODA, pp. 343–352 (2008)

    Google Scholar 

  3. Andoni, A., Do Ba, K., Indyk, P., Woodruff, D.P.: Efficient Sketches for Earth-Mover Distance, with Applications. In: FOCS, pp. 324–330 (2009)

    Google Scholar 

  4. Benkert, M., Gudmundsson, J., Merrick, D., Wolle, T.: Approximate one-to-one point pattern matching. J. Discrete Algorithms 15, 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, S.: Finding Color and Shape Patterns in Images. PhD thesis, Stanford University, Department of Compute Science (1999)

    Google Scholar 

  6. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-dimensional point set pattern matching. Inf. Process. Lett. 105(2), 73–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching Point Sets with Respect to the Earth Mover’s Distance. Computational Geometry: Theory and Applications 39(2), 118–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardoze, D.E., Schulman, L.J.: Pattern Matching for Spatial Point Sets. In: FOCS, pp. 156–165 (1998)

    Google Scholar 

  9. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Combinatorial and Experimental Methods for Approximatie Point Pattern Matching. Algorithmica 38(1), 59–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate Geometric Pattern Matching Under Rigid Motions. IEEE PAMI 21(4), 371–379 (1999)

    Article  MATH  Google Scholar 

  11. Klein, O., Veltkamp, R.C.: Approximation Algorithms for Computing the Earth Mover’s Distance Under Transformations. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1019–1028. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Movers Distance as a Metric for Image Retrieval. Int. J. of Comp. Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, H., Xu, J. (2013). FPTAS for Minimizing Earth Mover’s Distance under Rigid Transformations. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics