Abstract
We study algorithms for computing the convolution of a private input x with a public input h, while satisfying the guarantees of (ε, δ)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give an algorithm for computing convolutions which satisfies (ε, δ)-differentially privacy and is nearly optimal for every public h, i.e. is instance optimal with respect to the public input. We prove optimality via spectral lower bounds on the hereditary discrepancy of convolution matrices. Our algorithm is very efficient – it is essentially no more computationally expensive than a Fast Fourier Transform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 273–282. ACM (2007)
Bhaskara, A., Dadush, D., Krishnaswamy, R., Talwar, K.: Unconditional differentially private mechanisms for linear queries. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1269–1284. ACM, New York (2012)
Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 609–618. ACM, New York (2008)
Bolot, J., Fawaz, N., Muthukrishnan, S., Nikolov, A., Taft, N.: Private decayed sum estimation under continual observation. Arxiv preprint arXiv:1108.6123 (2011)
Hubert Chan, T.-H., Shi, E., Song, D.: Private and continual release of statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 405–417. Springer, Heidelberg (2010)
Chandrasekaran, K., Thaler, J., Ullman, J., Wan, A.: Faster private release of marginals on small databases. arXiv preprint arXiv:1304.3754 (2013)
Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.: Submodular functions are noise stable. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1586–1592. SIAM (2012)
Cormode, G., Procopiuc, C.M., Srivastava, D., Yaroslavtsev, G.: Accurate and efficient private release of datacubes and contingency tables
Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 202–210. ACM (2003)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 381–390. ACM (2009)
Dwork, C., Pitassi, T., Naor, M., Rothblum, G.: Differential privacy under continual observation. In: STOC (2010)
Gençay, R., Selçuk, F., Whitcher, B.: An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Elsevier Academic Press (2002)
Gray, R.M.: Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory 2(3), 155–239 (2006)
Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 803–812. ACM (2011)
Hardt, M., Rothblum, G.: A multiplicative weights mechanism for privacy-preserving data analysis. In: Proc. 51st Foundations of Computer Science (FOCS). IEEE (2010)
Hardt, M., Rothblum, G., Servedio, R.: Private data release via learning thresholds. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 168–187. SIAM (2012)
Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (2010)
Kasiviswanathan, S., Rudelson, M., Smith, A., Ullman, J.: The price of privately releasing contingency tables and the spectra of random matrices with correlated rows. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 775–784. ACM (2010)
Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 123–134. ACM, New York (2010)
Li, C., Miklau, G.: An adaptive mechanism for accurate query answering under differential privacy. PVLDB 5(6), 514–525 (2012)
Li, C., Miklau, G.: Measuring the achievable error of query sets under differential privacy. CoRR abs/1202.3399 (2012)
Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. European Journal of Combinatorics 7(2), 151–160 (1986)
Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via discrepancy. In: Proceedings of the 44th ACM Symposium on Theory of Computing (2012)
Narayanan, A., Shi, E., Rubinstein, B.: Link prediction by de-anonymization: How we won the kaggle social network challenge. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1825–1834. IEEE (2011)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, SP 2008, pp. 111–125. IEEE (2008)
Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)
Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy: the sparse and approximate cases
Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 810–821. Springer, Heidelberg (2012)
Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fawaz, N., Muthukrishnan, S., Nikolov, A. (2013). Nearly Optimal Private Convolution. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-40450-4_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40449-8
Online ISBN: 978-3-642-40450-4
eBook Packages: Computer ScienceComputer Science (R0)