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Abstract

We study computing the convolution of a private input x with a public
input h, while satisfying the guarantees of (e, §)-differential privacy. Con-
volution is a fundamental operation, intimately related to Fourier Trans-
forms. ,In our setting, the private input may represent a time series of
sensitive events or a histogram of a database of confidential personal infor-
mation. Convolution then captures important primitives including linear
filtering, which is an essential tool in time series analysis, and aggregation
queries on projections of the data.

We give a nearly optimal algorithm for computing convolutions while
satisfying (e, d)-differential privacy. Surprisingly, we follow the simple
strategy of adding independent Laplacian noise to each Fourier coefficient
and bounding the privacy loss using the composition theorem from [10].
We derive a closed form expression for the optimal noise to add to each
Fourier coefficient using convex programming duality. Our algorithm is
very efficient — it is essentially no more computationally expensive than
a Fast Fourier Transform. To prove near optimality, we use the recent
discrepancy lowerbounds of [23] and derive a spectral lower bound using
a characterization of discrepancy in terms of determinants.

1 Introduction

The noise complexity of linear queries is of fundamental interest in the theory
of differential privacy. Consider a database that represents users (or events) of
N different types (in the case of events, a type is a time step). We may encode
the database as a vector x indexed by {1,..., N}, where x; gives the number of
users of type i. A linear query asks for the dot product (a,x); a workload of M
queries is given as a matrix A, and the intended output is Ax. As the database
often encodes personal information, we wish to answer queries in a way that
does not compromise the individuals represented in the data. We adopt the
now standard notion of (g, d)-differential privacy [§; informally, an algorithm
is differentially private if its output distribution does not change drastically
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when a single user/event changes in the database. This definition necessitates
randomizition and approximation, and, therefore, the question of the optimal
accuracy of any differentially private algorithm on a workload A comes into the
center. We discuss accuracy in terms of mean squared error as a measure of
approximation: the expected average of squared error over all M queries.

The queries in a workload A can have different degrees of correlation, and
this poses different challenges for the private approximation algorithm. In
one extreme, when A is a set of Q(NN) independently sampled random {0, 1}
(i.e. counting) queries, we know, by the seminal work of Dinur and Nissim [7],
that any (e, d)-differentially private algorithm needs to incur at least (V)
squared error per query on average. On the other hand, if A consists of the
same counting query repeated M times, we only need to add O(1) noise per
query [8]. While those two extremes are well understood — the bounds cited
above are tight — little is known about workloads of queries with some, but not
perfect, correlation.

The convolutionl] of the private input x with a public vector h is defined as
the vector y where

N
Yi = Z hjwifj (mod N)-
J=1

This convolution map is a workload of N linear queries. Each query is a circular
shift of the previous one, and, therefore, the queries are far from independent
but not identical either. Convolution is a fundamental operation that arises in
algebraic computations such as polynomial multiplication. It is a basic operation
in signal analysis and has well known connection to Fourier transforms. Of
primary interest to us, it is a natural primitive in various applications:

e linear filters in the analysis of time series data can be cast as convolu-
tions; as example applications, linear filtering can be used to isolate cycle
components in time series data from spurious variations, and to compute
time-decayed statistics of the data;

e when user type in the database is specified by d binary attributes, aggre-
gate queries such as k-wise marginals and generalizations can be repre-
sented as convolutions.

Privacy concerns arise naturally in these applications: the time series data can
contain records of sensitive events, such as financial transactions, records of user
activity, etc.; some of the attributes in a database can be sensitive, for example
when dealing with databases of medical data.

We give the first nearly optimal algorithm for computing convolution un-
der (g, d)-differential privacy constraints. Our algorithm gives the lowest mean
squared error achievable by adding independent (but non-uniform) Laplace noise
to the Fourier coefficients of x and bounding the privacy loss by the composition

1Here we define circular convolution, but, however, as discussed in the paper, our results
generalize to other types of convolution, which are defined similarly.



theorem of Dwork et al. [I0]. Using complementary slackness conditions, we de-
rive a simple closed form for the optimal amount of error that should be added
in the direction of each Fourier coefficient. We prove that, for any fixed h, up to
polylogarithmic factors, any (e, d)-differential private algorithm incurs at least
as much squared error per query as our algorithm. Somewhat surprisingly, our
result shows that the simple strategy of adding indepdendent noise in the Fourier
domain is nearly optimal for computing convolutions. Prior to our work there
were known nearly instance—optimaﬂ (e, d)-differentially private algorithm for a
natural class of linear queries. Additionally, our algorithm is simpler and more
efficient than related algorithms for (g, 0)-differential privacy.

To prove optimality of our algorithm, we use the recent discrepancy-based
noise lower bounds of Muthukrishnan and Nikolov [23]. We use a character-
ization of discrepancy in terms of determinants of submatrices discovered by
Lovasz, Spencer, and Vesztergombi, together with ideas by Hardt and Talwar,
who give instance-optimal algorithms for the stronger notion of (g, 0)-differential
privacyﬁ. A main technical ingredient in our proof is a connection between the
discrepancy of a matrix A and the discrepancy of PA where P is an orthogonal
projection operator.

In addition to applications to linear filtering, our algorithm allows us to
approximate marginal queries encoded by w-DNFs, which generalize k-wise
marginal queries. Using concentration results for the spectrum of bounded-
width DNF's, we derive a non-trivial error bound for approximating w-DNF
queries. The bound is independent of the DNF size.

Related work. The problem of computing private convolutions has not
been considered in the literature before. However, there is a fair amount of
work on the more general problem of computing arbitrary linear queries, as well
as some work on special cases of convolution maps.

The problem of computing arbitrary linear maps of a private database his-
togram was first considered in the seminal work of Dinur and Nissim [7]. They
showed that privately answering M random 0-1 queries on a universe of size
N requires ©Q(N) mean squared error as long as M = Q(N), and this bound is
tight. These bounds do not directly apply to our work, as a set of independent
random queries is not likely to encode a circular convolution. Nevertheless, one
can show, using spectral noise lower bounds, that a convolution with a random
0-1 vector h requires assymptotically as much error as N random queries. Yet,
many particular convolutions of interest require much less noise. This fact mo-
tivates us to study algorithms for approximating the convolution x * h which
are optimal for any given h. An efficient algorithm with this kind of instance
per instance (in terms of h) optimality gaurantee obviates the need to develop
specialized algorithms. Next we review some prior work on special instances of
convolution maps and also related work on computing linear maps optimally.

Bolot et al. [3] give algorithms for various decayed sum queries: window

2Note that instance-optimality here refers to the query vector h, while we still consider
worst-case error over the private input x.

3Note that establishing instance-optimality for (e, )-differential privacy is harder from
error lower bounds perspective, as the privacy definition is weaker.



sums, exponentially and polynomially decayed sums. Any decayed sum func-
tion is a type of linear filter, and, therefore, a special case of convolution. Thus,
our current work gives a nearly optimal (e, §)-differentially private approxima-
tion for any decayed sum function. Moreover, as far as mean squared error
is concerned, our algorithms give improved error bounds for the window sums
problem: constant squared error per query. However, unlike [3], we only con-
sider the offline batch-processing setting, as opposed to the online continual
observation setting.

The work of Barak et al. [I] on computing k-wise marginals concerns a
restricted class of convolutions (see Section [B)). Moreover, Kasiviswanathan [16]
show a noise lower bound for k-wise marginals which is tight in the worst case.
Our work is a generalization: we are able to give nearly optimal approximations
to a wider class of queries, and our lower and upper bounds nearly match for
any convolution.

Li and Miklau [I8,[I9] proposed the class of extended matrix mechanisms,
building on prior work on the matrix mechanism [I7], and showed how to effi-
cently compute the optimal mechanism from the class. Furthermore, indepen-
dently and concurrently with our work, Cormode et al. [6] considered adding
optimal non-uniform noise to a fixed transform of the private database. Since
our mechanism is a special instance of the extended matrix mechanism, the algo-
rithms of Li and Miklau have at most as much error as our algorithm. However,
similarly to [6], we gain significantly in efficiency by fixing a specific transform
(in our case the Fourier transform) of the data and computing a closed form
expression for the optimal noise magnitudes. Unlike the work of Li and Mik-
lau and Cormode et al., we are able to show nearly tight lower bounds for any
differentially private algorithm (not just the extended matrix mechanism) and
any set of convolution queries. Therefore, we can show that the choice of the
Fourier transform comes without loss of generality for any set of convolution
queries.

In the setting of (e, 0)-differential privacy, Hardt and Talwar [I5] prove nearly
optimal upper and lower bounds on approximating Ax for any matrix A. Re-
cently, their results were improved, and made unconditional by Bhaskara et
al. [2]. Prior to our work a similar result was not known for the weaker notion
of approximate privacy, i.e. (g,d)-differential privacy. Subsequently to our work,
our results were generalized by Nikolov, Talwar, and Zhang [24] to give nearly
optimal algorithms for computing any linear map A under (¢, ¢)-differential pri-
vacy. Their work combined our use of hereditary discrepancy bounds on error
through the determinant lower bound with results from assymptotic convex ge-
ometry. The algorithms from [2L[15] are computationally expensive, as they
need to sample from a high-dimensional convex bodyﬁ. Even the more efficient
algorithm from [24] has running time Q(N?), as it needs to approximate the
minimum enclosing ellipsoid of an N-dimensional convex body. By contrast our
algorithm’s running time is dominated by the running time of the Fast Fourier

40ne of the best known algorithms is due to Lovész and Vempala [21] and, ignoring other
parameters, makes ©(N3) calls to a separation oracle, each of which would require solving a
linear programming feasibility problem.



Transform, i.e. O(N log N), making it more suitable for practical applications.
Also, for some sets of queries, such as running sums, our analysis gives tighter
bounds than the analysis of the algorithm in [24].

A related line of work seeks to exploit sparsity assumptions on the private
database in order to reduce error; as we do not limit the database size, our results
are not directly comparable. Using our histogram representation, database size
corresponds to the norm ||x||; where x is the database in histogram representa-
tion. For general linear queries, the multiplicative weights algorithm of Hardt
and Rothblum achieves mean squared error O(n+y/log N) for ||z|; < n. This
bound is nearly tight for random queries, but can be loose for special queries
of interest. For example, running sums require noise O(logo(l) N), which is
less than n except for n very small in the universe size. In general, algorithms
which bound database size in order to bound error become less useful when
database size is large compared to the total number of queries, and for very
large databases algorithms such as ours are still of interest. This is true also for
the line of algorithms for marginal queries which give error an arbitrary small
constant fraction of the database size [B[I3[I4L25]. Note further that the opti-
mal error for a subset of all marginal queries may be less than linear in database
size, and our algorithms will give near optimal error for the specific subset of
interest.

Organization. We begin with preliminaries on differential privacy and
convolution operators. In section [8l we derive our main lower bound result, and
in section [ we describe and analyze our nearly optimal algorithm. In section[f]
we describe applications of our main results.

2 Preliminaries

Notation: IN, R, and C are the sets of non-negative integers, real, and complex
numbers respectively. By log we denote the logarithm in base 2 while by In
we denote the logarithm in base e. Matrices and vectors are represented by
boldface upper and lower cases, respectively. A7, A*, A stand for the trans-
pose, the conjugate and the transpose conjugate of A, respectively. The trace
and the determinant of A are respectively denoted by tr(A) and det(A). A,,.
denotes the m-th row of matrix A, and A.,, its n-th column. A|g, where A is a
matrix with N columns and S C [N], denotes the submatrix of A consisting of
those columns corresponding to elements of S. Aa(1),...,Aa(n) represent the
eigenvalues of an n x n matrix A. Iy is the identity matrix of size N. E[] is
the statistical expectation operator. Lap(z, s) denotes the Laplace distribution
centered at x with scale s, i.e. the distribution of the random variable = + 7
where 7 has probability density function p(y) o exp(—|y|/s).

2.1 Convolution

In this section, we first give the definition of circular convolution. We then re-
call important results on the Fourier eigen-decomposition of convolution. Gen-



eralization to other notions of convolution and applications are discussed in
Section

Let © = {xp,...,zn—1} be a real input sequence of length N, and h =
{ho,...,hn—1} a sequence of length N. The circular convolution of x and h is
the sequence y = = * h of length N defined by

N-—1
Yk =Y Tnh(—n) moa n> Vk € {0,..., N —1}. (1)

n=0

Definition 1. The N x N circular convolution matriz H is defined as

ho  hy-1i hn-a ... I
h ho :
H=1"n Iy
: . . ho hy-1
L hver e he b he Ly
This matriz is a circulant matriz with first column h = [ho, ..., hx_1]T € RY,

and its subsequent columns are successive cyclic shifts of its first column. Note

that H is a normal matriz (HHY = HYH).

Define the column vectors X = [zg,...,zy_1]7 € RY,andy = [yo,...,yn_1]T €
RY. The circular convolution () can be written in matrix notation y = Hx.
In Section 2221 we recall that circular convolution can be diagonalized in the
Fourier basis.

2.2 Fourier Eigen-decomposition of Convolution

In this section, we recall the definition of the Fourier basis, and the eigen-
decomposition of circular convolution in this basis.

Definition 2. The normalized Discrete Fourier Transform (DFT) matriz of
size N s defined as

1 Jj2rmn
Py — {_exp (_7>} . @)
\/N N m,ne€{0,...,.N—1}

Note that Fy is symmetric (Fy = FJTV) and unitary (FNyFY = F%FN =1Iy).

We denote by f,, = [1,ej217rvm .. .,eﬂ?r mN(Nfl)]T € CV the m-th column of
the inverse DFT matrix F&. Or alternatively, £ is the m-th row of Fy. The

normalized DFT of a vector h is simply given by h = Fyh.

Theorem 1 ( [12]). Any circulant matriz H can be diagonalized in the Fourier
basis F: the eigenvectors of H are given by the columns {f,}mero,... . n—1} Of



the inverse DF'T matriz Fﬁ, and the associated eigenvalues {/\m}me{o_’____,N,l}
are given by V/Nh, i.e. by the DF'T of the first column h of H:

Vm e {0,...,N—1}, Hf, = A

N-1 _
where Ay, = \/Nflm = Z hne_ﬂﬂNmn.
n=0

Equivalently, in the Fourier domain, the circular convolution matriz H becomes
a diagonal matriz H = diag{~/ Nh}.

Corollary 1. Consider the circular convolution y = Hx of x and y. Let
x=Fpyx and h = Fxh denote the normalized DFT of x and h. In the Fourier
domain, the circular convolution becomes a simple entry-wise multiplication of
the components of V' Nh with the components of X: y=Fyy = Hx.

2.3 Privacy Model
2.3.1 Differential Privacy

Two real-valued input vectors x,x’ € [0,1]" are neighbors when ||x —x'||; < 1.

Definition 3. A randomized algorithm A satisfies (g, 0)-differential privacy if
for all neighbors x,x’ € [0,1]", and all measurable subsets T of the support of

A, we have
Pr[A(x) € T] < e“Pr[A(X') € T + 6,

where probabilities are taken over the randomness of A.

2.3.2 Laplace Noise Mechanism

Definition 4. A function f : [0,1]N — C has sensitivity s if s is the smallest
number such that for any two neighbors x,x’ € [0,1]V,

[f(x) = [ < s

Theorem 2 ( [§]). Let f : [0,1]Y — C have sensitivity s. Suppose that on
input x, algorithm A outputs f(x)+ z, where z ~ Lap(0, s/e). Then A satisfies
(e,0)-differential privacy.

2.3.3 Composition Theorems

An important feature of differential privacy is its robustness: when an algorithm
is a “composition” of several differentially private algorithms, the algorithm
itself also satisfies differential privacy constraints, with the privacy parameters
degrading smoothly. The results in this subsection quantify how the privacy
parameters degrade.

The first composition theorem is an easy consequence of the definition of
differential privacy:



Theorem 3 ( [8]). Let Ay satisfy (e1,01)-differential privacy and As satisfy
(€2, 82)-differential privacy, where As could take the output of Ay as input.
Then the algorithm which on input x outputs the tuple (A;(x), Az(A1(x),x))
satisfies (e1 + €2, 01 + d2)-differential privacy.

In a more recent paper, Dwork et al. proved a more sophisticated compo-
sition theorem, which often gives asymptotically better bounds on the privacy
parameters. Next we state their theorem.

Theorem 4 ( [10]). Let Ay, ..., A be such that algorithm A; satisfies (g;,0)-
differential privacy. Then the algorithm that on input x oulpuls the tuple
(A1 (x), ..., Ar(x)) satisfies (g,d)-differential privacy for any 6 > 0 and

2.4 Accuracy

In this paper we are interested in differentially private algorithms for the con-
volution problem. In the convolution problem, we are given a public sequence
h = {h1,...,hn} and a private sequence = {x1,...,zx}. Our goal is to
design an algorithm A that is (g, d)-differentially private with respect to the
private input x (taken as column vector x), and approximates the convolution
h % x. More precisely,

Definition 5. Given a vector h € RN which defines a convolution matriz H,
the mean (expected) squared error (MSE) of an algorithm A is defined as

1
MSE = sup —E[||A(x) — Hx||3].
xERN N
Note that MSE measures the mean expected squared error per output com-
ponent.

3 Lower Bounds

In this section we derive a spectral lower bound on mean squared error of dif-
ferentially private approximation algorithms for circular convolution. We prove
that this bound is nearly tight for every fixed h in the following section. The
lower bound is state as Theorem [Bl

Theorem 5. Let h € RN be an arbitrary real vector and let us relabel the
Fourier coefficients of h so that |ho| > ... > |hy_1|. For all sufficiently small
and 0, the expected mean squared error MSE of any (g, d)-differentially private
algorithm A that approrimates h xx is at least

K2h2
MSE = Q { max —%=L | (3)
K=1 Nlog”~ N



For the remainder of the paper, we define the notation specL.B(h) for the
right hand side of @), i.e. specLB(h) = max®_, %.

The proof of Theorem[Hlis based on recent work [23] connecting combinatorial
discrepancy and privacy. Adapting a strategy due to Hardt and Talwar [15],
we instantiate the basic discrepancy lower bound for any matrix PA, where P
is a projection matrix, and use the maximum of these lower bounds. However,
we need to resolve several issues that arise in the setting of (e, d)-differential
privacy. While projection works naturally with the volume-based lower bounds
of Hardt and Talwar, the connection between the discrepancy of A and PA is not
immediate, since discrepancy is a combinatorially defined quantity. Our main
technical contribution in this section is analyzing the discrepancy of PA via the
determinant lower bound of Lovész, Spencer, Vesztergombi. This approach was
generalized and extended by Nikolov, Talwar, and Zhang [24] to show nearly
optimal lower bounds for arbitrary linear maps.

We start our presentation with preliminaries from prior work and then we
develop our lower bounds for convolutions.

3.1 Discrepancy Preliminaries

We define (¢2) hereditary discrepancy as

herdisc(A) = max min _ [JAv]|s.
WC[N]ve{-1,+1}W

The following result connects discrepancy and differential privacy:

Theorem 6 ( [23]). Let A be an M x N complex matriz and let A be an (g,0)-
differentially private algorithm for sufficiently small constant € and §. There
exists a constant C and a vector x € {0,1}" such that E[|A(x) — Ax|3] >
Chcrdisc(A)2

log? N

The determinant lower bound for hereditary discrepancy due to Lovasz,
Spencer, and Vesztergombi gives us a spectral lower bound on the noise required
for privacy.

Theorem 7 ( [20]). There exists a constant C' such that for any complex
M x N matriz A, herdisc(A) > C' maxg g VK| det(B)|'/5, where K ranges
over [min{ M, N}] and B ranges over K x K submatrices of A.

Corollary 8. Let A be an M x N complex matriz and let A be an (g,0)-
differentially private algorithm for sufficiently small constant € and §. There
exists a constant C' and a vector x € {0,1}N such that, for any K x K submatriz

2/K
B of A, E[|lA(x) — Ax|3] > C XL RIE

3.2 Proof of Theorem

We exploit the power of the determinant lower bound of Corollary 8 by com-
bining the simple but very useful observation that projections do not increase



mean squared error with a lower bound on the maximum determinant of a sub-
matrices of a rectangular matrix. We present these two ingredients in sequence
and finish the section with a proof of Theorem

Lemma 1. Let A be an M XN complex matriz and let A be an (g, 0)-differentially
private algorithm for sufficiently small constant € and §. There exists a constant
C and a vector x € {0,1}" such that for any L x M projection matriz P and

for any K x K submatriz B of PA, E[||A(x) — Ax||3] > O%W.

Proof. We show that there exists an (e, §)-differentially private algorithm B that
satisfies
E[[|B(x) - PAx||3] < E[|A(x) — Ax][3]. (4)

Then we can apply Corollary B to B and PA to prove the corollary.

The algorithm B on input x outputs Py where y = A(x). Since B is
a function of A(x) only, it satisfies (e,¢)-differential privacy by Theorem [Bl
It satisfies (@) since for any y and any projection matrix P it holds that
[P(y — Ax)[|2 < [ly — Ax]l2. O

Our main technical tool is a linear algebraic fact connecting the determinant
lower bound for A and the determinant lower bound for any projection of A.

Lemma 2. Let A be an M x N complex matriz with singular values \y > ... >
AN and let P be a projection matriz onto the span of the left singular vectors
corresponding to \1,..., k. There exists a constant C and K x K submatriz

B of PA such that
= (K 1/K
| det(B)[V/K > C\/N <H )\i>
i=1

Proof. Let C = PA and consider the matrix D = CCH. It has eigenvalues
A%, ..., A%, and therefore

K
det(D) = [T A?.
i=1
On the other hand, by the Binet-Cauchy formula for the determinant, we have
det(D) = det(CCH)
= > det(Cls)?
se('¥)

N
< max det(C|g).
(K) se(I) (Cls)

Rearranging and raising to the power 1/2K, we get that there exists a K x K
submatrix of C such that

—1/2 K
wore= () ({1
i=1

10

1/K



Using the bound (%) < (%)K completes the proof. O

We can now prove our main lower bound theorem by combining Lemma [II
and Lemma

of Theorem[d As usual, we will express h * x as the linear map Hx, where
H is the convolution matrix for h. By Lemma [0, it suffices to show that for
each K, there exists a projection matrix P and a K x K submatrix B of PH
such that |det(B)|'/X > Q(VK|hk|). Recall that the eigenvalues of H are
VNho, ...,v/Nhx_1, and, therefore, the i-th singular value of H is \/N|fLi_1|.
By Lemma 2] there exists a constant C', a projection matrix P, and a submatrix
B of PH such that

K-1 1/K
K ) A
| det(B)[/5 > €y N (H vNIMI) > OVK |hi|.
1=0

This completes the proof. O

4 Upperbounds

Standard (e, §)-privacy techniques such as input perturbation or output pertur-
bation in the time or in the frequency domain lead to mean squared error, at
best, proportional to ||h|3.

Next we describe an algorithm which is nearly optimal for (e, §)-differential
privacy. This algorithm is derived by formulating the error of a natural class
of private algorithms as a convex program and finding a closed form solution.
An alternative solution that partitions the spectrum of H geometrically is de-
scribed in Appendix [Al The class of algorithms we consider is those which add
independent Gaussian noise to the Fourier coefficients of the private input x.
Interestingly, we show that this simple strategy is nearly optimal for computing
convolution maps.

Consider the class of algorithms, which first add independent Laplacian noise
variables z; = Lap(0, b;) to the Fourier coefficients &; to compute &; = &; + 2,
and then output y = FﬁI:Ii This class of algorithms is parameterized by the
vector b = (by,...,bx_1); a member of the class will be denoted A(b) in the
sequel. The question we address is: For given €, > 0, how should the noise
parameters b be chosen such that the algorithm .A(b) achieves (g, §)-differential
privacy in x for ¢; neighbors, while minimizing the mean squared error MSE?
It turns out that by convex programming duality we can derive a closed form
expression for the optimal b, and moreover, the optimal A(b) is nearly optimal
amonyg all (g,8)-differentially private algorithms. The optimal parameters are
used in Algorithm [I1

Theorem 9. Algorithm [ satisfies (g,0)-differential privacy, and achieves ex-
pected mean squared error

In(1/6)  ~
MSE = 4 IN b3 (5)

11



Algorithm 1 FOURIER MECHANISM

2In(1/8)||hls
2

Set v = N

Compute X = Fyx and h= Fnx.
for alli € {0,...,N — 1} do
if |hi| > 0 then
- o
Set z; = Lap < VM)
else if |h;] = 0 then
Set z; =0
end if
Set i’l = i’l —|—AZ7;.
Set gz = \/Nhli’l
end for
Output ¥ = F{y

Moreover, Algorithm [ runs in time O(N log N).

Before proving Theorem[d] we show that it implies that Algorithm[lis almost
optimal for any given h.

Theorem 10. For any h, Algorithm [ satisfies (e,0)-differential privacy and

2 2
achieves expected mean squared error O (specLB(h)™2 N10g62|l|ln(1/5)).

Proof. Assume that |ho| > k1| > ... > |hx_1|. Then, by definition of I = {0 <
i < N —1:|h;| >0}, we have |h;| =0, for all j > |I| — 1. Thus,

[7]—1 ||
. . 1 .
Bl = 7 fhul = 3 il
1=0 =1
||

1
< Z = VN log N/specLB(h)

i=1
= H|1|\/NlogN\/specLB(h), (6)

where H,,, = Z;il % denotes the m-th harmonic number. Recalling that H,, =
O(logm), and combining the bound (Bl) with the expression of the MSE (IO
yields the desired bound. O

of Theorem[d For running time, we note that our algorithm is no more expen-
sive than computing a Fast Fourier Transform, which can be done in O(N log N)
arithmetic operations using the classical Cooley-Tukey algorithm, for example.

Denote the set I = {0 <i < N —1: |h;| > 0}. We formulate the problem of
finding the algorithm A(b) which minimizes MSE subject to privacy constraints

12



as the following optimization problem:

min Zb12|ilz|2 (7)
el

{biYier
1 g2
.t. — = 8
° ; No? ~ 2In(1/6) (®)
by >0,Viel. 9)

Next we justify this formulation.

Privacy Constraint. We first show that the output y of an algorithm A(b)
is an (e, §)-differentially private function of x, if the constraint (&) is satisfied.
Denote y = Hx. If ¥ is an (e, d)-differentially private function of x, then by
Theorem B ¥ is also (g, d)-differentially private, since the computation of §
depends only on F& and § and not on x directly. Thus we can focus on the
requirements on b for which ¥ is (g, d) private.

If i ¢ I, then g; = 0 and does not affect privacy regardless of b;. Thus, we
canset b; =0 foralli ¢ I. If i € I, we first characterize the £;-sensitivity of Z; as
a function of x. Recall that #; = £/1x is the inner product of x with the Fourier

basis vector f;. The sensitivity of &; is therefore ||f;|lcc = \/—%, Vi. Then, by
Theorem 2] #; = &, + Lap (0, b;) is e;-differentially private in x, with ¢; = \/%bv .

The computation of y; depends only on h; and Z;, thus, by Theorem [ y; is

\/%bi -differentially private in x.

Finally, by Theorem[l y is (e, d) differentially private for any § > 0, as long
as constraint (&) holds.

Accuracy Objective. We show that finding the algorithm A(b) which
minimizes the MSE is equivalent to finding the parameters b; > 0, ¢ € I, which
minimize the objective function (). Note that y = FEHx = FIH(Fyx+2) =
y+ F%I:Iz Thus, the output y is unbiased: E[y] = y. The mean squared error
is given by:

1 A
MSE = E[|[F 4|}

1 A A
= NE[tr(F%szHHHFN)]

1, - .
= Ntr(HQE[zzH]) = 22 |hi)?b2,
i€l
which yields the desired objective function ().
Closed Form Solution. The program (@)—(@) is convex in 1/b?. Using the

KKT conditions of this program, we can derive a closed form optimal solution:

by = \/(2 In(1/8)||h||;)/(Ne2|h|) when i € I and b} = 0 otherwise. Substituting
these values back into the objective finishes the proof. Full details of the analysis
of the convex program can be found in Appendix [Bl O
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5 Generalizations and Applications

In this section we describe some generalizations and applications of our lower
bounds and algorithms for private convolution.

5.1 Compressible Convolutions

A case of special interest is convolutions h * z where h is a compressible se-
quence. Such cases appear in practice in signal processing. For compressible
h we can show that Algorithm [ outperforms input and output perturbation.
First we present a definition of compressible sequences and then we give the im-
proved upper bounds. A specific example of private compressible convolutions
is developed in Section [54] in the context of computing marginal queries.

Definition 6. A vector h € RY is (c,p)-compressible (in the Fourier basis) if
it satisfies:
1
(i+1)p’
Theorem 11. Let h be a (c,p)-compressible vector for some constant p >

2. Then Algorithm [0 satisfies (e, 0)-differential privacy and achieves expected
c%1og® N log(1/6) )
Ne?

VO<i<N—1:|h)?<c

mean squared error O( for p = 2 and for p # 2 achieves

o () ).

Notice that the bound on squared error improves on input and output per-
turbation by a factor O(=).
The proof of Theorem [T follows from Theorem [@ and the following lemma.

Lemma 3. Let h be a (¢, p)-compressible vector for some p > 1. Then, we have

N—1 .
. - c(l+InN), ifp=2
Il = 3 [l < { i

=0

5 ifp>2

Proof. Approximating a sum by an integral in the usual way, for 0 < a < b and
p > 2, we have

b b+1
Zéz 3 1
(G ) e il

- 1 +/b+1 dr
SECESVZER T

Bounding the integral on the right hand side, we get

i¥< 1—}—111%7 ifp:2
i—a (’L+1)ZD/2 - 1+W, 1fp>2

The lemma then follows from the definition of (¢, p)-compressibility. O
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5.2 Running Sum

Running sums can be defined as the circular convolution ' * h of the se-
quences h = (1,...,1,0,...,0), where there are N ones and N zeros, and
2’ = (z,0,...,0), where the private input z is padded with N zeros. An el-
ementary computation reveals that h; = VN and h; = O(N—Y/2) for all i > 1.
By Theorem [0 Algorithm [I computes running sums with mean squared error
O(1) (ignoring dependence on € and 4), improving on the bounds of [41[9,26] in

the mean squared error regime.

5.3 Linear Filters in Time Series Analysis

Linear filtering is a fundamental tool in analysis of time-series data. A time
series is modeled as a sequence = = (4);2_ ., supported on a finite set of time
steps. A filter converts the time series into another time series. A linear filter
does so by computing the convolution of x with a series of filter coefficients
w, i.e. computing y; = > .0 w;zy—;. For a finitely supported z, y can be
computed using circular convolution by restricting x to its support set and
padding with zeros on both sides.

We consider the case where = is a time series of sensitive events. Each
element x; is a count of events or sum of values of individual transactions that
have occurred at time step i. When we deal with values of transactions, we
assume that individual transactions have much smaller value than the total. We
emphasize that the definition of differential privacy with respect to x defined
this way corresponds to event-level privacy. Semantically, this guarantee implies
that even an adversary who has arbitrary information about all but a single
event of interest cannot find out with certainty whether the event of interest
has occur-ed. This guarantee is weaker than the user-level guarantee, which
implies that knowing all events related to all but a single user of interest provides
little information about the user. The user-level guarantee would unfortunately
require excessive noise for filtering time series data, as the sensitivity of the
convolution query becomes unbounded. On the other hand, the event-level
guarantee is often sufficient, specifically in settings when sensitive events occur
only infrequently.

We consider applications to financial analysis, but our methods are appli-
cable to other instances of time series data, e.g. we may also consider network
traffic logs or a time series of movie ratings on an online movie streaming ser-
vice. We can perform almost optimal differentially private linear filtering by
casting the filter as a circular convolution. Next we briefly describe a couple of
applications of private linear filtering to financial analysis. For more references
and detailed description, we refer the reader the book of Gengan, Selcuk, and
Whitcher [11].

Volatility Estimation. The value at risk measure is used to estimate
the potential change in the value of a good or financial instrument. Assume, for
example, that in an online advertising system we would like to estimate potential
changes in the number of clicks per day for a set of display ad campaigns, and
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denote by x; the number of clicks on day ¢ from the start of the campaigns. The
sensitive event is assumed to be a single ad click, for example a click on an ad for
a type of medical treatment. In order to estimate volatility, we need to estimate
a measure of the deviation of the x; for a given time period [t — W + 1,¢]. It is
appropriate to take older fluctuations with less significance. One way to do this
is by using linear filtering of the time series of absolute deviations in the click

counts:
w—1

1 ,
o= T Z Nat—i — Tyl
Zi:l A =0

where A is a decay parameter and Z; is the average count over [t — W + 1,1].
The quantity Z; is itself given by the convolution % Zzo_l zi—; and can be
computed nearly optimally using Algorithm [II Given the sequence T, we can
construct the time series (y;); = (|z; — Z;|);. Using the triangle inequality, one
can verify that for a fixed value of z, ||y — ¥'|l1 < ||z — 2/|1, and therefore an
algorithm which is differentially private with respect to y is also differentially
private with respect to x. Therefore, we can use Algorithm [ to estimate o¢
with nearly optimal mean squared error.

Computing T was treated in [3] as the window sums problem, together with
other decayed sum problems. The quantity ¢ is an exponentially decayed sum
computed over a window and can be approximated under e-differential privacy
using the methods of [3]. However, as noted above, Algorithm [l gives improved
mean squared error guarantees for window sums, as well as a near-optimality
guarantee.

Business Cycle Analysis. The goal of business cycle analysis is to extract
cyclic components in the time series and smooth-out spurious fluctuation. Two
classical methods for business-cycle analysis are the Hodrick-Prescott filter and
the Baxter-King filter. Here we briefly sketch the form of the Hodrick-Prescott
(HP) filter. Let us take the example of time series = of ad clicks again, with a
single component x; giving number of clicks on a set of ads per day or per hour.
We can use the HP filter to detect cyclical trends in ad clicking activity. The
filtered-out cyclical (smooth) component of the data extracted by the HP filter
can be written as a convolution of the following form:

06 s ) )
= 22| (A0 + Ast)) (i + w0g;)

Jj=0

S

Yi Y

Above, X is a smoothing parameter: the larger A is, the more the data is
smoothed by the filter; 6; and A; are functions of A. In principle, this is a
convolution of infinite time series, but in practice we truncate the series to a
finite length.

5.4 Generalized Marginal Queries

Marginal queries are a class of queries posed to d-attribute binary databases,
i.e. databases where each row of the database is associted with a d-bit binary
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vector, corresponding to the values of d binary attributes. A marginal query is
specified by a setting a € {0,1}? of the d attributes and a subset S C [d] of k
attributes; the exact answer to the query is the number of rows in the database
consistent with a on S. In this subsection we address the error required to
privately answer a natural generalization of marginal queries. A generalized
marginal query is specified by a setting a € {0,1}¢ of the d attributes and a
w-DNF h and the exact answer is the number of rows b € {0, 1}¢ in the private
database for which h(a @ b) is satisfied (here @ is componentwise XOR). In
the case of traditional marginal queries the DNF' £ is a single disjunction of k
unnegated variables. Generalized marginals however allow more complex queries
such as, for example, “show all users who agree with a on a; and at least one
other attribute”.

More formally, we encode a binary d-attribute database in histogram rep-
resentation as a function z : {0,1}¢ — [n]. The value of z(a) for a € {0,1}¢
corresponds to the number of rows in the database with attribute setting a, and
n is the database size.

Definition 7. Let h(c) be a w-DNF given by h(c) = (11 AN ... ANl1w)V ...V
(s1 N ... Nls), where €, ; is a literal, i.e. either ¢, or ¢, for some p € [d].
The generalized marginal function for h and a database = : {0,1}% — [n] is a
function (z  h) : {0,1}? — [n] defined by

(wxh)(a)= > ab)hlasb).

be{0,1}4

The overload of notation for x*h here is on purpose as generalized marginals
can be interpreted as an instance of a generalization of circular convolutions.
In particular, circular convolutions are associated naturally with the group of
addition modulo N, while generalized marginals are an instance of convolutions
associated with the group of addition modulo 2 of d-dimensional binary vectors
(formally (Z/27Z)%). Moreover, there is a Fourier transform that diagonalizes
convolutions over (Z/27)? and that shares all properties with the transform de-
fined in Section Pl which are necessary for our lower and upper bound arguments.
In particular, we need that any component of any Fourier basis vector has norm
1/ VN, which is true for the Fourier transform diagonalizing convolutions over
(Z,/27)°. Therefore, we can privately approximate generelized marginal queries
using Algorithm [I and, furthermore, our analysis of the privacy and accuracy
guarantees for the algorithm still holds. Using results from learning theory on
the spectral concentration of bounded width DNFs and the bound from Sec-
tion Bl we can show that Algorithm [ gives non-trivial error for generalized
marginal queries.

Theorem 12. Let h be a w-DNF and x : {0,1}% — [n] be a private database.
Algorithm [ satisfies (g,0)-differential privacy and computes the generalized

marginal xxh for h and and x with mean squared error bounded by O(logi#2d(1—1/0(w 1"gw))).

In addition to this explicit bound, we also know (by Theorem [4) that up
to a factor of d*, Algorithm [0 is optimal for computing generalized marginal
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functions. Notice that error bound we proved improves on randomized response
by a factor of 2~ (d/(wlogw)). interestingly this factor is independent of the size
of the w-DNF formula.

In related work, Hardt et al. [I4] considered database queries that can be
computed by an ACO circuit. Generalized marginal queries can be computed
by a two-layer ACO circuit. However, our results are incomparable to theirs, as
they consider the setting where the database is of bounded size ||x||; < n and
our error bounds are independent of ||z||;. Our error bounds improve on the
bounds of [I4] when the database is large enough so that our error bound is
sublinear in database size.

The proof of Theorem follows from Lemma Ml and the following con-
centration result for the spectrum of w-DNF formulas, originally proved by
Mansour [22] in the context of learning under the uniform distribution.

Theorem 13 ( [22]). Let h:{0,1}¢ — {0,1} be a w-DNF. Let F C 2! be the
index set of the top 247 Fourier coefficients of h. Then,

S R(S)[? < 2% owE,
SEF

6 Conclusion

We derive nearly tight upper and lower bounds on the error of (e, §)-differentially
private for computing convolutions. Our lower bounds rely on recent general
lower bounds based on discrepancy theory and elementary linear algebra; our
upper bound is a simple computationally efficient algorithm. We also sketch
several applications of private convolutions, in time series analysis and in com-
puting generalizes marginal queries on a d-attribute database.

Our results are nearly optimal for any A when the database size is large
enough with respect to the number of queries. In some settings it is reason-
able to assume however that database size is much smaller, and our algorithms
give suboptimal error for such sparse databases. Nearly optimal algorithms for
computing a workload of M linear queries posed to a database of size at most
n were given in [24], but their algorithm has running time at least O(M?Nn).
Since our dense case algorithm for computing convolutions has running time
O(Nlog N), an interesting open problem is to give an algorithm with running
time O(Nn polylog(N,n)) for computing convolutions with optimal error when
the database size is at most n.
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A Spectrum Partitioning Algorithm

We partition the spectrum of the convolution matrix H into geometrically grow-
ing in size groups and adds different amounts of noise to each group. Noise is
added in the Fourier domain, i.e. to the Fourier coefficients of the private input
x. The most noise is added to those Fourier coefficients which correspond to
small (in absolute value) coefficients of h, making sure that privacy is satis-
fied while the least amount of noise is added. In the analysis of optimality, we
show that the noise added to each group can be charged to the lower bound
specLB(h). Because the number of groups is logarithmic in N, we get almost
optimality. This analysis is inspired by the work of Hardt and Talwar [15].
However, our algorithm is simpler and significantly more efficient.

The (g, 0)-differentially private algorithm we propose for approximating h
x is shown as Algorithm In the remainder of this section we assume for
simplicity that IV is a power of 2. We also assume, for ease of notation, that
lho| > ... > |hy_1|. Our algorithm and analysis do not depend on i except as
an index, so this comes without loss of generality.

Algorithm 2 SPECTRALPARTITION

et n= 2(1+log€N) In(1/6)

Compute X = Fyx and h= Fyx.
To = o + Lap(n)
for all k € [1,log N] do
for all i € [N/2F, N/2F~1 — 1] do
Set #; = &; + Lap(n2~"/?).
Set y; = \/N]Allfi'l
end for
end for
Output y = F]Hvy

Lemma 4. Algorithm [@ satisfies (e, d)-differential privacy. Also, there exists
an absolute constant C' such that Algorithm [2 achieves expected mean squared
error
(1+logN)1og(1/6 pay N/zkil_l -
MSE < C (lhol® + Z ok (10)
i=N/2k

Proof. Privacy. We claim that X is an (e, §)-differentially private function of
x. The other computations depend only on h and X and not on x directly, so,
by Theorem [ incur no loss in privacy.

First we analyze the sensitivity of each Fourier coefficient #;. As a function
of x, Z; is an inner product of x with a Fourier basis vector. Let that vector be
f and let x, X’ be two neighboring inputs, i.e. ||x — x’||; < 1. Then we have

£ (x = x)| < [Iflloolx = x[l1 <

1
VN
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Therefore, by Theorem[2 when i € [N/2% N/2F=1-1], 7, is (%\/;, 0)-differentially
private. By Theorem [ % is (¢/,6) differentially private for any § > 0, where

logN Lk
1 N 2
2 =21In(1 — E ——

(1/5)1+717ogN _ 2

Accuracy. Observe E[Z;] = &; since we add unbiased Laplace noise to each
;. Also, the variance of Lap(n2~%/2) is 222, Therefore, E[y;] = vV Nh;#; and
the variance of 7; when i € [N/2¥, N/2F=1 — 1] is O(N|h|*n*2~%). By linearity
of expectation, E[Fy] = Hx. Adding variances for each k and dividing by N,
we get the right hand side of (I0). The proof is completed by observing that
the inverse Fourier transform FI is an isometry for the ¢> norm, so does not
change mean squared error. O

Theorem 14. For any h, Algorithm [Q satisfies (e, 9)-differential privacy and

achieves expected mean squared error O(specLB(h)W).

Proof. By Lemma [ we know that

).

log N 4
log N'log(1/9) , - “ log® N1n(1/9
MSE < Cng(/)ﬂhOP + } : ﬁ|h1\r/2k7171|2) = O(speCLB(h)gT(/)
k=1

O

B Closed Form Solution for the Optimal A(b)

We derive a closed form solution of ([@)—(@) using convex programming duality.
Let us first rewrite the program by substituting a; = 1/b?:

- i[>
min —
{ai}ier el (473

(11)
t. i =
> Za 21n 1/5)
a; >0, Viel.

The Lagrangian is

L(a,v,\) Z|az +V<Zal_2ln1/5> Z/\al (12)

iel iel
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The KKT conditions are given by

hil?
Viel, —| 2| +v—-—X=0

Za»—Nig—O 13
2 n(1/9) (13)
/\iai:()

a; >0, >0

The following solution (a*,v*, A*) satisfies the KKT conditions, and is thus the
optimal solution to (1))

Ne?

Viel, L N— AF =0, v
21In(1/4)([h[x

a;

Neg2
(14)

~ 2
_ 21n<1/6>||h||1> |

Consequently, the optimal noise parameters b for the original problem ([@)—(@),
and the associated MSE are

[2In(1/®)[blls e
b = N (] ifiel

0 ifigl (15)
- In(1/6)  ~
* 212 2
MSE* =2 E |hi|“bF =4 N I3,

el

which are the noise parameters and MSE of Algorithm [l
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