Abstract
We introduce and investigate a new notion of resilience in graph spanners. Let S be a spanner of a graph G. Roughly speaking, we say that a spanner S is resilient if all its point-to-point distances are resilient to edge failures. Namely, whenever any edge in G fails, then as a consequence of this failure all distances do not degrade in S substantially more than in G (i.e., the relative distance increases in S are very close to those in the underlying graph G). In this paper we show that sparse resilient spanners exist, and that they can be computed efficiently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)
Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)
Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Graph spanners in the streaming model: An experimental study. Algorithmica 55(2), 346–374 (2009)
Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. Journal of Graph Algorithms and Applications 10(2), 365–385 (2006)
Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Computing graph spanner in small memory: fault-tolerance and streaming. Discrete Mathematics, Algorithms and Applications 2(4), 591–605 (2010)
Baswana, S.: Dynamic algorithms for graph spanners. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 76–87. Springer, Heidelberg (2006)
Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-spanners and purely additive spanners. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 672–681 (2005)
Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms 8(4), 35:1–35:51 (2012)
Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. Journal of Combinatorial Theory, Series B 16(2), 97–105 (1974)
Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 206–214. Springer, Heidelberg (2012)
Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. of 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pp. 435–444 (2009)
Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)
Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)
Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Proc. of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC 2011), pp. 169–178 (2011)
Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 716–727. Springer, Heidelberg (2007)
Elkin, M., Peleg, D.: (1+epsilon, beta)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004)
Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs. Unpublished manuscript (1996)
Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 62–82. Springer, Heidelberg (2005)
Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloquium Mathematicae 3(1), 50–57 (1954)
Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality Indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)
Matoušek, J.: Lectures on Discrete Geometry. Springer (2002)
Pettie, S.: Low distortion spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg (2007)
Zarankiewicz, K.: Problem p 101. Colloquium Mathematicae 2, 301 (1951)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A. (2013). On Resilient Graph Spanners. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-40450-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40449-8
Online ISBN: 978-3-642-40450-4
eBook Packages: Computer ScienceComputer Science (R0)