Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 8100))

Abstract

System level understanding of the repetitive cycle of cell growth and division is crucial for disclosing many unknown principles of biological organisms. The deterministic or stochastic approach – when deployed separately – are not sufficient to study such cell regulation due to the complexity of the reaction network and the existence of reactions at different time scales. Thus, an integration of both approaches is advisable to study such biochemical networks. In this paper we show how Generalised Hybrid Petri Nets can be used to intuitively represent and simulate the eukaryotic cell cycle. Our model captures intrinsic as well as extrinsic noise and deploys stochastic as well as deterministic reactions. Additionally, marking-dependent arc weights are biologically motivated and introduced to Snoopy – a tool for animating and simulating Petri nets in various paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cel. 5(8), 3841–3862 (2004)

    Article  Google Scholar 

  2. Fujita, S., Matsui, M., Matsuno, H., Miyano, S.: Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E87-A(11), 2919–2927 (2004)

    Google Scholar 

  3. Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  5. Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58(1), 35–55 (2007)

    Article  Google Scholar 

  6. Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

    Article  Google Scholar 

  7. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for model-based design of wetlab experiments. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 138–163. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. Nonlinear Analysis: Hybrid Systems 6(4), 942–959 (2012)

    Article  MathSciNet  Google Scholar 

  11. Herajy, M.: Computational Steering of Multi-Scale Biochemical Reaction Networks. Ph.D. thesis, Brandenburg University of Technology Cottbus - Computer Science Institute (2013)

    Google Scholar 

  12. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks through generalised hybrid Petri nets. Tech. Rep. 02/2011, Brandenburg University of Technology Cottbus, Dept. of CS (2011)

    Google Scholar 

  13. Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proceedings of the National Academy of Sciences of the United States of America 106(16), 6471–6476 (2009)

    Article  Google Scholar 

  14. Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004)

    Article  Google Scholar 

  15. Liu, Z., Pu, Y., Li, F., Shaffer, C., Hoops, S., Tyson, J., Cao, Y.: Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle. J. Chem. Phys. 136(34105) (2012)

    Google Scholar 

  16. Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: A unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Methods in Molecular Biology, ch. 21, vol. 804, pp. 409–437. Humana Press (2012)

    Google Scholar 

  17. Matsui, M., Fujita, S., Suzuki, S., Matsuno, H., Miyano, S.: Simulated cell division processes of the xenopus cell cycle pathway by genomic object net. Journal of Integrative Bioinformatics, 0001 (2004)

    Google Scholar 

  18. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3(3) (2003)

    Google Scholar 

  19. Mura, I., Csikász-Nagy, A.: Stochastic Petri net extension of a yeast cell cycle model. Journal of Theoretical Biology 254(4), 850–860 (2008)

    Article  Google Scholar 

  20. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. Journal of Theoretical Biology 250(1), 209–218 (2008)

    Article  MathSciNet  Google Scholar 

  21. Singhania, R., Sramkoski, R.M., Jacobberger, J.W., Tyson, J.J.: A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. 7(2), e1001077 (2011)

    Google Scholar 

  22. Steuer, R.: Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. Journal of Theoretical Biology 228(3), 293–301 (2004)

    Article  MathSciNet  Google Scholar 

  23. Sveiczer, Á., Novák, B., Mitchison, J.: The size control of fission yeast revisited. J. Cell Sci. 109, 2947–2957 (1996)

    Google Scholar 

  24. Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. Journal of Theoretical Biology 210(2), 249–263 (2001)

    Article  Google Scholar 

  25. Tyson, J., Novak, B.: A Systems Biology View of the Cell Cycle Control Mechanisms. Elsevier, San Diego (2011)

    Google Scholar 

  26. Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G., Böhm, C. (eds.) Proceedings of the Fifth Colloquium on Automata, Languages and Programming, vol. 62, pp. 464–476. Springer, Heidelburg (1978)

    Chapter  Google Scholar 

  27. Wikipedia: Wikipedia website (2012), http://www.wikipedia.org/ (accessed: September 20, 2012)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herajy, M., Schwarick, M., Heiner, M. (2013). Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle. In: Koutny, M., van der Aalst, W.M.P., Yakovlev, A. (eds) Transactions on Petri Nets and Other Models of Concurrency VIII. Lecture Notes in Computer Science, vol 8100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40465-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40465-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40464-1

  • Online ISBN: 978-3-642-40465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics