Skip to main content

Comparison of Evolving Fuzzy Systems with an Ensemble Approach to Predict from a Data Stream

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

An approach to apply ensembles of regression models, built over the chunks of a data stream, to aid in residential premises valuation was proposed. The approach consists in incremental expanding an ensemble by systematically generated models in the course of time. The output of aged component models produced for current data is updated according to a trend function reflecting the changes of premises prices since the moment of individual model generation. The method employing general linear model, multiple layer perceptron, and radial basis function networks was empirically compared with evolving fuzzy systems designed for incremental learning from data streams.The results showed thatevolving fuzzy systems and general linear models outperformed the ensembles built using artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nguyen, N., Cripps, A.: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. J. of Real Estate Research 22(3), 313 (2001)

    Google Scholar 

  2. Selim, H.: Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications 36, 2843–2852 (2009)

    Article  Google Scholar 

  3. D’Amato, M.: Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies. Int. Real Estate Review 10(2), 42–65 (2007)

    Google Scholar 

  4. Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)

    Article  Google Scholar 

  5. García, N., Gámez, M., Alfaro, E.: ANN+GIS: An automated system for property valuation. Neurocomputing 71(4-6), 733–742 (2008)

    Article  Google Scholar 

  6. González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)

    Article  Google Scholar 

  7. Guan, J., Zurada, J., Levitan, A.S.: An Adaptive Neuro-Fuzzy Inference System Based Approach to Real Estate Property Assessment. J. of Real Estate Res. 30(4), 395–421 (2008)

    Google Scholar 

  8. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  9. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)

    Google Scholar 

  10. Trawiński, B., Trawiński, K., Lughofer, E., Lasota, T.: Investigation of Evolving Fuzzy Systems Methods FLEXFIS and eTS on Predicting Residential Prices. In: Petrosino, A. (ed.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 123–130. Springer, Heidelberg (2011)

    Google Scholar 

  11. Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream of Premises Transactions. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 127–140. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Trawiński, B.: Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J. Univers. Comput. Sci. 19(4), 539–562 (2013)

    Google Scholar 

  13. Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: Weighting Component Models by Predicting from Data Streams Using Ensembles of Genetic Fuzzy Systems. Accepted for the Tenth International Conference on Flexible Query Answering Systems, FQAS 2013, Granada, Spain, September 18-20 (2013)

    Google Scholar 

  14. Telec, Z., Lasota, T., Trawiński, B., Trawiński, G.: An Analysis of Change Trends by Predicting from a Data Stream Using Neural Networks. Accepted for the Tenth International Conference on Flexible Query Answering Systems, FQAS 2013, Granada, Spain, September 18-20 (2013)

    Google Scholar 

  15. Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 79–85 (2012)

    Article  Google Scholar 

  16. Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  17. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artificial Intelligence 154(1-2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)

    Google Scholar 

  19. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report. Department of Computer Science, Trinity College, Dublin (2004)

    Google Scholar 

  20. Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)

    Article  Google Scholar 

  22. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Getoor, L., et al. (eds.) KDD 2003, pp. 226–235. ACM Press, New York (2003)

    Google Scholar 

  23. Brzeziński, D., Stefanowski, J.: Accuracy Updated Ensemble for Data Streams with Concept Drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Improving Adaptive Bagging Methods for Evolving Data Streams. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 23–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble methods for evolving data streams. In: Elder IV, J.F., et al. (eds.) KDD 2009, pp. 139–148. ACM Press, New York (2009)

    Google Scholar 

  26. Lughofer, E., Klement, E.P.: FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems. In: Proc. of FUZZ-IEEE 2005, Reno, USA, pp. 915–920 (2005)

    Google Scholar 

  27. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  28. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  29. García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  30. Graczyk, M., Lasota, T., Telec, Z., Trawiński, B.: Nonparametric Statistical Analysis of Machine Learning Algorithms for Regression Problems. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part I. LNCS (LNAI), vol. 6276, pp. 111–120. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Telec, Z., Trawiński, B., Lasota, T., Trawiński, K. (2013). Comparison of Evolving Fuzzy Systems with an Ensemble Approach to Predict from a Data Stream. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics