Skip to main content

Investigation of Property Valuation Models Based on Decision Tree Ensembles Built over Noised Data

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8083))

Included in the following conference series:

Abstract

The ensemble machine learning methods incorporating bagging, random subspace, random forest, and rotation forest employing decision trees, i.e. Pruned Model Trees, as base learning algorithms were developed in WEKA environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. The accuracy of ensembles generated by the methods was compared for several levels of noise injected into an attribute, output, and both attribute and output. Ensembles built using rotation forest outperformed other models. In turn, random subspace method resulted in the models that were the most resistant to noised data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Skurichina, M., Raudys, S., Duin, R.P.W.: K-Nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training. IEEE Transactions on Neural Networks 11(2), 504–511 (2000)

    Article  Google Scholar 

  2. Nettleton, D.F., Orriols-Puig, A., Fornells, A.: A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial Intelligence Review 33(4), 275–306 (2010)

    Article  Google Scholar 

  3. Zhu, X., Wu, X.: Class Noise vs. Attribute Noise: A Quantitative Study of Their Impacts. Artificial Intelligence Review 22, 177–210 (2004)

    Article  MATH  Google Scholar 

  4. Sáez, J.A., Luengo, J., Herrera, F.: Fuzzy Rule Based Classification Systems versus Crisp Robust Learners Trained in Presence of Class Noise’s Effects: A Case of Study. In: 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), Córdoba, Spain, pp. 1229–1234 (2011)

    Google Scholar 

  5. Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Comparing Boosting and Bagging Techniques With Noisy and Imbalanced Data With Noisy and Imbalanced Data. IEEE Transactions on System, Man, and Cybernetics–Part A: Systems and Humans 41(3), 552–568 (2011)

    Article  Google Scholar 

  6. Lasota, T., Telec, Z., Trawiński, B., Trawiński, G.: Investigation of Random Subspace and Random Forest Regression Models Using Data with Injected Noise. In: Graña, M., Toro, C., Howlett, R.J., Jain, L.C. (eds.) KES 2012. LNCS (LNAI), vol. 7828, pp. 1–10. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS, vol. 5991, pp. 340–350. Springer, Heidelberg (2010)

    Google Scholar 

  8. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Neural Networks for a Regression Problem. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 213–220. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Lasota, T., Łuczak, T., Trawiński, B.: Investigation of Random Subspace and Random Forest Methods Applied to Property Valuation Data. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 142–151. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Lasota, T., Telec, Z., Trawiński, B., Trawiński, G.: Investigation of Rotation Forest Ensemble Method Using Genetic Fuzzy Systems for a Regression Problem. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part I. LNCS, vol. 7196, pp. 393–402. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lasota, T., Łuczak, T., Trawiński, B.: Investigation of Rotation Forest Method Applied to Property Price Prediction. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 403–411. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  16. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  17. Rodrígeuz, J.J., Kuncheva, I., Alonso, C.J.: Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  18. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lasota, T., Łuczak, T., Niemczyk, M., Olszewski, M., Trawiński, B. (2013). Investigation of Property Valuation Models Based on Decision Tree Ensembles Built over Noised Data. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2013. Lecture Notes in Computer Science(), vol 8083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40495-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40495-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40494-8

  • Online ISBN: 978-3-642-40495-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics