Abstract
We present Gbu, a terminating variant of the sequent calculus G3i for intuitionistic propositional logic. Gbu modifies G3i by annotating the sequents so to distinguish rule applications into two phases: an unblocked phase where any rule can be backward applied, and a blocked phase where only right rules can be used. Derivations of Gbu have a trivial translation into G3i. Rules for right implication exploit an evaluation relation, defined on sequents; this is the key tool to avoid the generation of branches of infinite length in proof-search. To prove the completeness of Gbu, we introduce a refutation calculus Rbu for unprovability dual to Gbu. We provide a proof-search procedure that, given a sequent as input, returns either a Rbu-derivation or a Gbu-derivation of it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press (1997)
Dyckhoff, R., Lengrand, S.: LJQ: A Strongly Focused Calculus for Intuitionistic Logic. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 173–185. Springer, Heidelberg (2006)
Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models. Journal of Automated Reasoning 51(2), 129–149 (2013)
Ferrari, M., Fiorentini, C., Fiorino, G.: Simplification rules for intuitionistic propositional tableaux. ACM Transactions on Computational Logic (TOCL) 13(2), 14:1–14:23 (2012)
Gabbay, D.M., Olivetti, N.: Goal-Directed Proof Theory. Springer (2000)
Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)
Howe, J.M.: Two loop detection mechanisms: A comparision. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 188–200. Springer, Heidelberg (1997)
Massacci, F.: Simplification: A general constraint propagation technique for propositional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 217–231. Springer, Heidelberg (1998)
Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic propositional logic. In: Behara, M., et al. (eds.) Symposia Gaussiana, Conference A, pp. 225–232. Walter de Gruyter, Berlin (1995)
Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ferrari, M., Fiorentini, C., Fiorino, G. (2013). A Terminating Evaluation-Driven Variant of G3i. In: Galmiche, D., Larchey-Wendling, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2013. Lecture Notes in Computer Science(), vol 8123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40537-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-40537-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40536-5
Online ISBN: 978-3-642-40537-2
eBook Packages: Computer ScienceComputer Science (R0)