Skip to main content

On the Duality of Proofs and Countermodels in Labelled Sequent Calculi

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8123))

  • 525 Accesses

Abstract

The duality of proofs and counterexamples, or more generally, refutations, is ubiquitous in science, but involves distinctions often blurred by the rethoric of argumentation. More crisp distinctions between proofs and refutations are found in mathematics, especially in well defined formalized fragments.

Every working mathematician knows that finding a proof and looking for a counterexample are two very different activities that cannot be carried on simultaneusly. Usually the latter starts when the hope to find a proof is fading away, and the failed attempts will serve as an implicit guide to chart the territory in which to look for a counterexample. No general recipe is, however, gained from the failures, and a leap of creativity is required to find a counterxample, if such is at all obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boretti, B., Negri, S.: Decidability for Priorean linear time using a fixed-point labelled calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 108–122. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57, 795–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Archive for Mathematical Logic 51, 71–92 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with an application to the Gödel-McKinsey-Tarski embedding. Journal of Logic and Computation (2013), doi:10.1093/logcom/ext036

    Google Scholar 

  5. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models. Journal of Automated Reasoning (2012), doi:10.1007/s10817-012-9252-7

    Google Scholar 

  6. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure and Applied Logic 163, 291–313 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galmiche, D., Salhi, Y.: Sequent calculi and decidability for intuitionistic hybrid logic. Information and Computation 209, 1447–1463 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, G., Genovese, V., Negri, S.: Counter-models from sequent calculi in multi-modal logics. In: LICS 2012, pp. 315–324. IEEE Computer Society (2012)

    Google Scholar 

  9. Goranko, V.: Refutation systems in modal logic. Studia Logica 53, 299–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free completeness in bi-intuitionistic logic. Journal of Logic and Computation 20, 233–260 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Larchey-Wendling, D.: Combining proof-search and counter-model construction for deciding Gödel-Dummett logic. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 94–110. Springer, Heidelberg (2002)

    Google Scholar 

  12. Maffezioli, P., Naibo, A., Negri, S.: The Church-Fitch knowability paradox in the light of structural proof theory. Synthese (2012) (Online first), doi:10.1007/s11229-012-0061-7

    Google Scholar 

  13. Negri, S.: Contraction-free sequent calculi for geometric theories, with an application to Barr’s theorem. Archive for Mathematical Logic 42, 389–401 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34, 507–544 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts of Knowledge - History, Philosophy and Logic, pp. 247–282. College Publications (2009)

    Google Scholar 

  16. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems of rules (2012) (submitted)

    Google Scholar 

  17. Negri, S.: A terminating cut-free sequent system for Gödel-Löb provability logic. Manuscript (2012)

    Google Scholar 

  18. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. The Bulletin of Symbolic Logic 4, 418–435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Negri, S., von Plato, J.: Proof Analysis. Cambridge University Press (2011)

    Google Scholar 

  20. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic propositional logic. In: Behara, et al. (eds.) Symposia Gaussiana, Conf. A, pp. 225–232. de Gruyter, Berlin (1995)

    Google Scholar 

  21. Salerno, J. (ed.): New Essays on the Knowability Paradox. Oxford University Press (2009)

    Google Scholar 

  22. Simpson, A.: Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. thesis, School of Informatics, University of Edinburgh (1994)

    Google Scholar 

  23. Skura, T.: Refutation systems in propositional logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 115–157. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Negri, S. (2013). On the Duality of Proofs and Countermodels in Labelled Sequent Calculi. In: Galmiche, D., Larchey-Wendling, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2013. Lecture Notes in Computer Science(), vol 8123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40537-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40537-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40536-5

  • Online ISBN: 978-3-642-40537-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics