Skip to main content

Belief Change in Nonmonotonic Multi-Context Systems

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8148))

Abstract

Brewka and Eiter’s nonmonotonic multi-context system is an elegant knowledge representation framework to model heterogeneous and nonmonotonic multiple contexts. Belief change is a central problem in knowledge representation and reasoning. In this paper we follow the classical AGM approach to investigate belief change in multi-context systems. Specifically, we formulate semantically the AGM postulates of belief expansion, revision and contraction for multi-context systems. We show that the change operations can be characterized in terms of minimal change by ordering equilibria of multi-context systems. Two distance based revision operators are obtained and related to the classical Satoh and Dalal revision operators (via loop formulas).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alchourrön, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. JSL 50(2), 510–530 (1985)

    Google Scholar 

  2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. JLP 45(1), 43–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI 2007, Vancouver, Canada, pp. 385–390. AAAI Press (2007)

    Google Scholar 

  4. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) IJCAI 2011, Barcelona, Spain, pp. 786–791. IJCAI/AAAI (2011)

    Google Scholar 

  6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  7. Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI 1988, St. Paul, MN, pp. 475–479. AAAI Press/The MIT Press (1988)

    Google Scholar 

  8. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context systems. In: KR 2010, Toronto, pp. 60–70. AAAI Press (2010)

    Google Scholar 

  9. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief change in answer set programming. TOCL 14(2), A:1–A:42 (2012)

    Google Scholar 

  11. Dragoni, A.F., Giorgini, P.: Toward a revision for multi-context systems. In: Workshop on Logics for Agent-Based Systems, LABS 2002, Tolose, France (2002)

    Google Scholar 

  12. Dragoni, A.F., Giorgini, P.: Distributed belief revision. In: AAMAS 2003, vol. 6(2), pp. 115–143 (2003)

    Google Scholar 

  13. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on causal rejection. TPLP 2, 711–767 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change. JPL 40(2), 295–331 (2011)

    Article  MATH  Google Scholar 

  15. Ferraris, P.: Logic programs with propositional connectives and aggregates. TOCL 12(4), 25:1–25:40 (2011)

    Google Scholar 

  16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP 1988, Seattle, Washington, pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  17. Guadarrama, J.C.A.: On Updates of Epistemic States Belief Change under Incomplete Information. PhD thesis, Clausthal University of Technology (2010)

    Google Scholar 

  18. Van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation. Elsevier (2008)

    Google Scholar 

  19. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1992)

    Article  MathSciNet  Google Scholar 

  20. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. TOCL 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  22. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W., Williams, M.-A.: A framework for multi-agent belief revision. Studia Logica 67(2), 291–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic structural properties. TPLP 7(4), 451–479 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Peppas, P.: Belief Revision. In: Handbook of Knowledge Representation, ch. 8. Foundations in Artificial Intelligence, pp. 317–360. Elsevier (2008)

    Google Scholar 

  26. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. TPLP 3(6), 671–713 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: FGCS 1988, Tokyo, Japan, pp. 455–462 (1988)

    Google Scholar 

  28. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence 155(1-2), 41–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Foo, N.Y.: Towards generalized rule-based updates. In: IJCAI (1), pp. 82–88. Morgan Kaufmann (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Zhuang, Z., Wang, K. (2013). Belief Change in Nonmonotonic Multi-Context Systems. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40564-8_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40563-1

  • Online ISBN: 978-3-642-40564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics