Abstract
Brewka and Eiter’s nonmonotonic multi-context system is an elegant knowledge representation framework to model heterogeneous and nonmonotonic multiple contexts. Belief change is a central problem in knowledge representation and reasoning. In this paper we follow the classical AGM approach to investigate belief change in multi-context systems. Specifically, we formulate semantically the AGM postulates of belief expansion, revision and contraction for multi-context systems. We show that the change operations can be characterized in terms of minimal change by ordering equilibria of multi-context systems. Two distance based revision operators are obtained and related to the classical Satoh and Dalal revision operators (via loop formulas).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alchourrön, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. JSL 50(2), 510–530 (1985)
Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. JLP 45(1), 43–70 (2000)
Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI 2007, Vancouver, Canada, pp. 385–390. AAAI Press (2007)
Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)
Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) IJCAI 2011, Barcelona, Spain, pp. 786–791. IJCAI/AAAI (2011)
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)
Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI 1988, St. Paul, MN, pp. 475–479. AAAI Press/The MIT Press (1988)
Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context systems. In: KR 2010, Toronto, pp. 60–70. AAAI Press (2010)
Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 71–83. Springer, Heidelberg (2007)
Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief change in answer set programming. TOCL 14(2), A:1–A:42 (2012)
Dragoni, A.F., Giorgini, P.: Toward a revision for multi-context systems. In: Workshop on Logics for Agent-Based Systems, LABS 2002, Tolose, France (2002)
Dragoni, A.F., Giorgini, P.: Distributed belief revision. In: AAMAS 2003, vol. 6(2), pp. 115–143 (2003)
Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on causal rejection. TPLP 2, 711–767 (2002)
Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change. JPL 40(2), 295–331 (2011)
Ferraris, P.: Logic programs with propositional connectives and aggregates. TOCL 12(4), 25:1–25:40 (2011)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP 1988, Seattle, Washington, pp. 1070–1080. MIT Press (1988)
Guadarrama, J.C.A.: On Updates of Epistemic States Belief Change under Incomplete Information. PhD thesis, Clausthal University of Technology (2010)
Van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation. Elsevier (2008)
Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1992)
Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. TOCL 2(4), 526–541 (2001)
Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)
Liu, W., Williams, M.-A.: A framework for multi-agent belief revision. Studia Logica 67(2), 291–312 (2001)
Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic structural properties. TPLP 7(4), 451–479 (2007)
Peppas, P.: Belief Revision. In: Handbook of Knowledge Representation, ch. 8. Foundations in Artificial Intelligence, pp. 317–360. Elsevier (2008)
Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. TPLP 3(6), 671–713 (2003)
Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: FGCS 1988, Tokyo, Japan, pp. 455–462 (1988)
Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence 155(1-2), 41–67 (2004)
Zhang, Y., Foo, N.Y.: Towards generalized rule-based updates. In: IJCAI (1), pp. 82–88. Morgan Kaufmann (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Y., Zhuang, Z., Wang, K. (2013). Belief Change in Nonmonotonic Multi-Context Systems. In: Cabalar, P., Son, T.C. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2013. Lecture Notes in Computer Science(), vol 8148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40564-8_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-40564-8_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40563-1
Online ISBN: 978-3-642-40564-8
eBook Packages: Computer ScienceComputer Science (R0)