Skip to main content

A New Initialization Algorithm for Bees Algorithm

  • Conference paper
Soft Computing Applications and Intelligent Systems (M-CAIT 2013)

Abstract

The Bees Algorithm (BA) is a swarm- based metaheuristic algorithm inspired by the foraging behavior of honeybees. This algorithm is very efficient, simple and natural algorithm. In this paper, two natural aspects, namely the patch environment and Levy motion are employed to propose a novel initialization algorithm to initialize the population of bees in the Bees Algorithm. Thus, an improved version of Bees Algorithm is adopted based on the proposed initialization procedure. This initialization algorithm is more natural modeling the patch environment in nature and Levy motion that is believed to characterize the foraging patterns of bees in nature. Experimental results prove the effectiveness of the proposed initialization algorithm. The obtained results confirm that the improved Bees Algorithm employing the proposed initialization algorithm outperforms the standard Bees Algorithm in terms of convergence speed and success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, X.-S.: Review of metaheuristics and generalised evolutionary walk algorithm. Int. J. Bio-Inspired Comput. 3(2), 77–84 (2011)

    Article  Google Scholar 

  2. Pham, D., et al.: The bees algorithm–a novel tool for complex optimisation problems. In: Proceedings of IPROMS 2006 Conference (2006)

    Google Scholar 

  3. Pham, D., et al.: Using the bees algorithm to schedule jobs for a machine. In: Proceedings of Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance (2007)

    Google Scholar 

  4. Pham, D., Otri, S., Darwish, A.H.: Application of the Bees Algorithm to PCB assembly optimisation. In: IPROMS, 3rd International Virtual Conference on Intelligent Production Machines and Systems (2007)

    Google Scholar 

  5. Lara, C., Flores, J.J., Calderón, F.: Solving a School Timetabling Problem Using a Bee Algorithm. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 664–674. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Pham, D., Darwish, A.H.: Fuzzy selection of local search sites in the Bees Algorithm. In: 4th International Virtual Conference on Intelligent Production Machines and Systems, IPROMS 2007 (2008)

    Google Scholar 

  7. Ahmad, S.: A study of search neighbourhood in the bees algorithm. Cardiff University (2012)

    Google Scholar 

  8. Ghanbarzadeh, A.: The Bees algorithm. A novel optimisation tool. Cardiff University

    Google Scholar 

  9. Otri, S.: Improving the bees algorithm for complex optimisation problems. Cardiff University (2011)

    Google Scholar 

  10. Packianather, M., Landy, M., Pham, D.: Enhancing the speed of the Bees Algorithm using Pheromone-based Recruitment. In: 7th IEEE International Conference on Industrial Informatics. IEEE (2009)

    Google Scholar 

  11. Viswanathan, G., et al.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)

    Article  Google Scholar 

  12. Bailis, P., Nagpal, R., Werfel, J.: Positional communication and private information in honeybee foraging models. Swarm Intelligence, 263–274 (2010)

    Google Scholar 

  13. Reynolds, A.M.: Cooperative random Lévy flight searches and the flight patterns of honeybees. Physics Letters A 354(5), 384–388 (2006)

    Article  Google Scholar 

  14. Reynolds, A.M., et al.: Honeybees perform optimal scale-free searching flights when attempting to locate a food source. Journal of Experimental Biology 210(21), 3763–3770 (2007)

    Article  Google Scholar 

  15. Bartumeus, F., Catalan, J.: Optimal search behavior and classic foraging theory. Journal of Physics A: Mathematical and Theoretical 42(43) (2009)

    Google Scholar 

  16. Reynolds, A.M., et al.: Displaced honey bees perform optimal scale-free search flights. Ecology 88(8), 1955–1961 (2007)

    Article  Google Scholar 

  17. Viswanathan, G., Raposo, E., Da Luz, M.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Review 5(3), 133–150 (2008)

    Article  Google Scholar 

  18. Brown, C.T., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecology 35(1), 129–138 (2007)

    Article  Google Scholar 

  19. Edwards, A.M.: Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology 92(6), 1247–1257 (2011)

    Article  Google Scholar 

  20. Edwards, A.M.: Using likelihood to test for Lévy flight search patterns and for general power‐law distributions in nature. Journal of Animal Ecology 77(6), 1212–1222 (2008)

    Article  Google Scholar 

  21. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Physical Review E 49, 4677–4683 (1994)

    Google Scholar 

  22. Molga, M., Smutnicki, C.: Test functions for optimization needs, http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

  23. Adorio, E.P., Diliman, U.: MVF-Multivariate Test Functions Library in C for Unconstrained Global Optimization, http://www.geocities.ws/eadorio/mvf.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussein, W.A., Sahran, S., Sheikh Abdullah, S.N.H. (2013). A New Initialization Algorithm for Bees Algorithm. In: Noah, S.A., et al. Soft Computing Applications and Intelligent Systems. M-CAIT 2013. Communications in Computer and Information Science, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40567-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40567-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40566-2

  • Online ISBN: 978-3-642-40567-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics