Skip to main content

English Nominal Compound Detection with Wikipedia-Based Methods

  • Conference paper
Text, Speech, and Dialogue (TSD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8082))

Included in the following conference series:

  • 2464 Accesses

Abstract

Nominal compounds (NCs) are lexical units that consist of two or more elements that exist on their own, function as a noun and have a special added meaning. Here, we present the results of our experiments on how the growth of Wikipedia added to the performance of our dictionary labeling methods to detecting NCs. We also investigated how the size of an automatically generated silver standard corpus can affect the performance of our machine learning-based method. The results we obtained demonstrate that the bigger the dataset, the better the performance will be.

This work was supported in part by the European Union and the European Social Fund through the project FuturICT.hu (grant no.: TÁMOP-4.2.2.C-11/1/KONV-2012-0013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword Expressions: A Pain in the Neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Vincze, V., Nagy T., I., Berend, G.: Multiword expressions and named entities in the Wiki50 corpus. In: Proceedings of RANLP 2011, Hissar, Bulgaria (2011)

    Google Scholar 

  3. Bonin, F., Dell’Orletta, F., Venturi, G., Montemagni, S.: Contrastive filtering of domain-specific multi-word terms from different types of corpora. In: Proceedings of the 2010 Workshop on Multiword Expressions: from Theory to Applications, pp. 77–80. Coling 2010 Organizing Committee, Beijing (2010)

    Google Scholar 

  4. de Medeiros Caseli, H., Villavicencio, A., Machado, A., Finatto, M.J.: Statistically-driven alignment-based multiword expression identification for technical domains. In: Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, pp. 1–8. ACL, Singapore (2009)

    Google Scholar 

  5. Nagy T., I., Vincze, V., Berend, G.: Domain-dependent identification of multiword expressions. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing 2011, pp. 622–627. RANLP 2011 Organising Committee, Hissar (2011)

    Google Scholar 

  6. Ramisch, C., Villavicencio, A., Boitet, C.: mwetoolkit: a framework for multiword expression identification. In: Proceedings of LREC 2010. ELRA, Valletta (2010)

    Google Scholar 

  7. Ramisch, C., Villavicencio, A., Boitet, C.: Web-based and combined language models: A case study on noun compound identification. In: Coling 2010: Posters, Beijing, China, pp. 1041–1049 (2010)

    Google Scholar 

  8. Nagy T., I., Berend, G., Vincze, V.: Noun compound and named entity recognition and their usability in keyphrase extraction. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing 2011, pp. 162–169. RANLP 2011 Organising Committee, Hissar (2011)

    Google Scholar 

  9. Nicholson, J., Baldwin, T.: Interpreting Compound Nominalisations. In: LREC 2008 Workshop: Towards a Shared Task for Multiword Expressions (MWE 2008), Marrakech, Morocco, pp. 43–45 (2008)

    Google Scholar 

  10. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proceedings of EMNLP 2000, pp. 63–70. ACL, Stroudsburg (2000)

    Google Scholar 

  11. McCallum, A.K.: Mallet: A machine learning for language toolkit (2002), http://mallet.cs.umass.edu

  12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  13. Erk, K., Strapparava, C. (eds.): Proceedings of the 5th International Workshop on Semantic Evaluation. ACL, Uppsala (2010)

    Google Scholar 

  14. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for Computational Linguistics, Stroudsburg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagy T., I., Vincze, V. (2013). English Nominal Compound Detection with Wikipedia-Based Methods. In: Habernal, I., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2013. Lecture Notes in Computer Science(), vol 8082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40585-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40585-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40584-6

  • Online ISBN: 978-3-642-40585-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics