Skip to main content

3D Object Class Geometry Modeling with Spatial Latent Dirichlet Markov Random Fields

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

This paper presents a novel part-based geometry model for 3D object classes based on latent Dirichlet allocation (LDA). With all object instances of the same category aligned to a canonical pose, the bounding box is discretized to form a 3D space dictionary for LDA. To enhance the spatial coherence of each part during model learning, we extend LDA by strategically constructing a Markov random field (MRF) on the part labels, and adding an extra spatial parameter for each part. We refer to the improved model as spatial latent Dirichlet Markov random fields (SLDMRF). The experimental results demonstrate that SLDMRF exhibits superior semantic interpretation and discriminative ability in model classification to LDA and other related models.

The research has received funding from the European Community’s Seventh Framework Programme (FP7) under grant agreement no. 270273, Xperience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Detry, R., Piater, J.: Continuous surface-point distributions for 3D object pose estimation and recognition. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 572–585. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Detry, R., Pugeault, N., Piater, J.: A Probabilistic Framework for 3D Visual Object Representation. PAMI 31(10), 1790–1803 (2009)

    Article  Google Scholar 

  4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection with Discriminatively Trained Part-Based Models. PAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  5. Golovinskiy, A., Funkhouser, T.A.: Consistent segmentation of 3D models. Computers and Graphics 33, 262–269 (2009)

    Article  Google Scholar 

  6. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences 101(suppl. 1), 5228–5235 (2004)

    Article  Google Scholar 

  7. Liebelt, J., Schmid, C.: Multi-View Object Class Detection with a 3D Geometric Model. In: CVPR (2010)

    Google Scholar 

  8. Mackey, L.: Latent Dirichlet Markov Random Fields for Semi-supervised Image Segmentation and Object Recognition (2007)

    Google Scholar 

  9. Shilane, P., Min, P., Kazhdan, M.M., Funkhouser, T.A.: The Princeton Shape Benchmark. In: SMI, pp. 167–178. IEEE Computer Society (2004)

    Google Scholar 

  10. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: ICCV (2005)

    Google Scholar 

  11. Wang, X., Grimson, E.: Spatial Latent Dirichlet Allocation. In: NIPS (2007)

    Google Scholar 

  12. Xiong, H., Szedmak, S., Piater, J.: Efficient,General Point Cloud Registration with Kernel Feature Maps. In: Canadian Conf. on Computer and Robot Vision (2013)

    Google Scholar 

  13. Yan, P., Khan, S.M., Shah, M.: 3D model based object class detection in an arbitrary view. In: ICCV (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, H., Szedmak, S., Piater, J. (2013). 3D Object Class Geometry Modeling with Spatial Latent Dirichlet Markov Random Fields. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics