
Postponing Optimization to Speed Up MAXSAT
Solving

Jessica Davies1 and Fahiem Bacchus2

1 MIAT, UR 875, INRA, F-31326 Castanet-Tolosan, France
jessica.davies@toulouse.inra.fr

2 Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5

fbacchus@cs.toronto.edu

Abstract. maxsat is an optimization version of sat that can represent
a wide variety of important optimization problems. A recent approach
for solving maxsat is to exploit both a sat solver and a Mixed Integer
Programming (mip) solver in a hybrid approach. Each solver generates
information used by the other solver in a series of iterations that termi-
nates when an optimal solution is found. Empirical results indicate that
a bottleneck in this process is the time required by the mip solver, arising
from the large number of times it is invoked. In this paper we present
a modified approach that postpones the calls to the mip solver. This in-
volves substituting non-optimal solutions for the optimal ones computed
by the mip solver, whenever possible. We describe the new approach
and some different instantiations of it. We perform an extensive empir-
ical evaluation comparing the performance of the resulting solvers with
other state-of-the-art maxsat solvers. We show that the best performing
versions of our approach advance the state-of-the-art in maxsat solving.

1 Introduction

maxsat, the optimization version of Satisfiability (sat), is the problem of finding
a minimum cost truth assignment for a set of clauses where a cost is incurred for
every falsified clause. It is called maxsat since in the simplest case where every
clause is equally costly to falsify, a solution will satisfy a maximum number of
clauses. In the most general version of maxsat some clauses are hard incurring
an infinite cost if they are falsified, while the other clauses are soft incurring
some integer cost greater than zero. This most general version of maxsat is
often called weighted partial maxsat (WPMS) and is what we address in
this paper. Many practical problems can be encoded in maxsat, so developing
effective ways to solve maxsat is an important research topic.

There are two standard methods for solving maxsat: using Branch and
Bound search (e.g. [9, 14]), and using a sequence of decision problems, usually
encoded as sat (e.g. [2, 3, 5, 15, 10]). In [6] an alternative algorithm for solving
maxsat, called maxhs, was presented. maxhs also solves a sequence of sat de-
cision problems, but in contrast to existing approaches the sat problems do not
become more difficult for the sat solver to solve. This is accomplished via a hy-
brid approach, whereby a sat solver and a Mixed Integer Linear Program (mip)



2 J. Davies and F. Bacchus

solver are used to cooperatively solve the maxsat problem using an approach
similar to Bender’s Decomposition [11]. The mip solver is used to find optimal
solutions which the sat solver then tests for feasibility. If the solution is not
feasible the sat solver computes a new constraint to add to the mip model and
the mip solver is invoked again to find a new optimal solution that additionally
satisfies the new constraint.

In this paper we investigate a new technique for improving the performance of
this hybrid approach. In [7] it has already been shown that the hybrid approach
is one of the state-of-the-art approaches to solving maxsat, and thus improving
this approach is one way of advancing the state-of-the-art.

Analyzing the performance of the hybrid approach indicates that the main
bottleneck is the time spent by the mip solver. This time mostly accumulates
from the number of times that the mip solver must be called: it is called every
time the sat solver computes a new feasibility constraint, in order to derive a
new optimal solution satisfying this additional constraint. Although these calls
often take relatively little time, after hundreds of separate calls the total time
becomes quite significant.

Inspired by an idea presented by Moreno-Centeno and Karp [16] we devel-
oped a method for delaying the calls to the mip solver for as long as possible.
We accomplish this by recognizing situations where non-optimal solutions can
be used in place of the optimal solutions produced by the mip solver without
impacting the algorithm’s correctness. The sat solver can use these non-optimal
solutions to compute its feasibility constraints and the iterations of feasibility
and “optimization” can continue. However, since the optimization phase is now
an approximation that can be computed cheaply, each iteration is much more
efficient. Eventually, however, an optimal solution must be computed to ensure
correctness. So our technique postpones, rather than removes, optimization.

We show that our new technique yields a significant improvement in the
performance of the hybrid algorithm and makes it the most robust current ap-
proach to solving maxsat. One of the reasons why we obtain such a good per-
formance improvement is that the mip solver is not perfectly incremental. By
using non-optimal solutions we collect many feasibility constraints before having
to compute their optimal solution. This means that each additional call to the
mip solver involves a model that has been augmented by many feasibility con-
straints, whereas in the previous approach the model was only augmented by a
single feasibility constraint. Although the mip solver can take advantage of its
previous computations when called again, it is not perfectly incremental. That
is, its solving time when given k new constraints is typically significantly smaller
than the sum of its k solving times when it is given these constraints one at a
time and asked to compute an optimal solution each time.

The remainder of the paper is organized as follows. Section 2 provides basic
definitions. The maxhs approach is then reviewed in Section 3 and we show that
its main bottleneck is the mip solving time. Section 4 presents the new algorithm,
which addresses this issue by allowing the mip optimization to be postponed. An



Non-Core Constraints for maxsat 3

effective additional enhancement, seeding the mip model with constraints [7], is
described in Section 5. The empirical results are reported in Section 6.

2 Background

A maxsat instance is specified by a set of propositional clauses F each having a
positive integer or infinite weight wt(c), c ∈ F . Clauses with infinite weight are
called hard clauses and are collectively denoted by hard(F). The other clauses
of F all have finite weight and are called soft clauses, soft(F) (F = hard(F) ∪
soft(F)).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the weights of the clauses in H (cost(H) =

∑
c∈H wt(c)); and (b)

if π is a truth assignment to the variables of F then cost(π) is the sum of the
weights of the clauses falsified by π (

∑
{c | π 6|=c} wt(c)). A solution for F is a truth

assignment π to the variables of F that satisfies hard(F) and is of minimum cost.
We let mincost(F) denote the cost of such a solution. If hard(F) is unsatisfiable,
then F has no solution. In the remainder of the paper, we assume that hard(F)
is satisfiable (this is easy to test in practice and facilitates clarity). A core κ of
a maxsat formula F is a subset of soft(F) such that κ∪hard(F) is unsatisfiable.
Note that since hard(F) is satisfiable, any solution to F must falsify at least one
clause in κ.

maxsat solvers that solve a sequence of decision problems typically insert
blocking variables (b-variables) into the soft clauses of the maxsat instance.

Definition 1. If F is a maxsat problem, then its b-variable relaxation is a
sat problem Fb = {(ci ∨ bi) : ci ∈ soft(F)} ∪ hard(F) where all clause weights
are removed. The b-variable bi appears in the relaxed clause (ci ∨ bi) and no
where else in Fb.

The b-variable relaxation Fb allows cores of the original maxsat formula F
to be computed conveniently, using the Assumption mechanism provided by
minisat [8]. minisat can take as input a set of assumptions A, specified as a set
of literals, along with a CNF formula F and then determine if F∧A is satisfiable.
It will return a satisfying truth assignment for F ∧A if one exists. Otherwise it
will report unsatisfiability and return a learnt clause c which is a disjunction of
negated literals of A. This clause has the property that F |= c. Thus in order
to find a core of maxsat instance F , we can pass minisat the CNF formula
Fb and the set of all negated b-variables as the assumptions. If F has a core,
minisat will return unsat along with a clause c = (bi1 ∨ · · · ∨ bik) such that
Fb |= c and κ = {ci1 , ..., cik} is a core of F . Any clause over positive b-variables
that is entailed by Fb, e.g., c = (bi1 ∨ · · · ∨ bik), is called a core constraint.

Besides supporting the computation of cores, the relaxed formula Fb can
also be used to find solutions for the original maxsat formula F . To accomplish
this we define an objective function bcost(π) over truth assignments π to the
variables of Fb, equal to the sum of the costs of the clauses whose b-variables



4 J. Davies and F. Bacchus

are set to true: bcost(π) =
∑
bi:π|=bi wt(ci). The minimum bcost models of Fb

are maxsat solutions.3

Proposition 1. mincost(F) = minπ|=Fb bcost(π). Furthermore, if π |= Fb achieves
a minimum value of bcost(π), then π restricted to the variables of F is a solution
for F .

However, Fb has many models whose bcost is greater than necessary. For
example, if a model π assigns bi to true even though it also satisfies the soft
clause ci, then the bcost of π could be reduced by instead assigning bi to false.
We can eliminate such models by modifying Fb so that the b-variables are forced
to be equivalent to the negation of their corresponding soft clauses.

Definition 2. Let F be a maxsat formula. Then

Fbeq = Fb ∪
⋃

ci∈soft(F)

{(¬bi ∨ ¬`) : ` ∈ ci}

is the relaxation of F with b-variable equivalences.

Again, the minimum bcost models of Fbeq are maxsat solutions.

Proposition 2. mincost(F) = minπ|=Fb
eq
bcost(π). Furthermore, if π |= Fbeq

achieves a minimum value of bcost(π), then π restricted to the variables of F is
a solution for F .

Propositions 1 and 2 show that we can solve the maxsat problem F by
searching for a bcost minimal satisfying assignment to Fb or to Fbeq. Note also
that Fbeq is a stronger theory enabling more inferences than Fb.

3 The maxhs Approach

In maxhs [6] a sat solver is called at every iteration to find a new core of F . A
mip solver is then invoked to find a minimum bcost assignment to the b-variables
that satisfies all of the core constraints found so far. This optimization problem
corresponds to a Minimum Cost Hitting Set (MCHS) problem,4 where the goal
is to find a minimum cost set of clauses that hits each of the known cores. The
optimal hitting set found by the mip solver is tested by the sat solver. If the
sat solver is unable to find another core, it means the maxsat solution has been
found. Otherwise, the sat solver returns a new core, the mip solver re-optimizes,
and the iterations continue.

This algorithm is shown in Algorithm 1. The set of cores is initialized on line
2 to the empty set. In the main loop of maxhs, the mip solver is invoked to find
3 Recall we assume hard(F) is satisfiable, so Fb is satisfiable.
4 An instance of MCHS is given by a universe of weighted elements U and a collection
of subsets of these elements, K = {κ1, ..., κm}, κi ⊆ U . The goal is to find a minimum
weight set of elements hs ⊆ U such that hs ∩ κi 6= ∅ for all κi ∈ K.



Non-Core Constraints for maxsat 5

Algorithm 1: The maxhs algorithm for solving maxsat.
1 MaxHS

(
F
)

2 K = ∅
3 while true do
4 hs = FindMinCostHittingSet(K)
5 (sat?,κ) = SatSolver(F \ hs)

// If sat, κ contains the satisfying truth assignment.
// If unsat, κ is a new core.

6 if sat? then
7 break // Exit While Loop, κ is a maxsat solution.
8 K = K ∪ {κ}
9 return

(
κ, cost(κ)

)

a minimum cost hitting set hs of K, on line 4. If removing hs from F results in
a satisfiable formula (tested by the sat solver on line 5), we break out of the
loop on line 7 and return the satisfying assignment as the maxsat solution on
line 9. Otherwise, the sat solver will return a new core, κ to add to K on line 8
and the loop repeats.

The correctness of Algorithm 1 is established by the following theorem.

Theorem 1. [6] If K is a set of cores for the maxsat problem F , hs is a
minimum cost hitting set of K, and π is a truth assignment satisfying F \ hs
then mincost(F) = cost(π) = cost(hs).

This theorem shows that when Algorithm 1 breaks out of its loop, κ is a maxsat
solution. The argument that the loop must eventually terminate is based on
observing that every time the sat solver returns a core κ, it must be distinct
from all previously returned cores (because a hitting set for all previous cores
does not hit κ). Since there is a finite number of distinct cores, the sat solver
must eventually be unable to find another new core and the loop will terminate.

3.1 Behaviour of maxhs

The behaviour of maxhs in influenced by three potential sources of exponential
complexity. These include the time required by the sat solver to solve F \ hs,
the time required by the mip solver to solve the NP-hard MCHS problem, and
the number of iterations required. The examples below illustrate that each of
these factors can, in the worst case, cause exponential runtime.

Example 1. Let F be an instance of the Pigeon Hole Principle, where all clauses
are considered soft with weight 1. Removing any single clause from F will make
the remaining clauses satisfiable. Therefore, maxhs will terminate after the first
core is found. So only one MCHS problem will be solved, and it is trivial. How-
ever, the time spent by the sat solver to find a single core will be exponential.



6 J. Davies and F. Bacchus

Example 2. Let K be a MCHS instance. We construct a maxsat instance F that
is equivalent to K as follows. For each set κ ∈ K, where κ = {e1, ..., ek}, there is
a hard clause (e1∨· · ·∨ek). Finally, there is a soft clause (¬e) with weight wt(e)
for each element e ∈

⋃
κ∈K κ. A minimal core is a core such that any proper

subset is not a core. It is easy to see that the minimal cores of F correspond
to the hard clauses of F and therefore the total number of minimal cores is
equal to |K|. The sat solver can find each of the minimal cores in polynomial
time, by using unit propagation alone. The number of minimal cores required
by maxhs is at most |K|. So the only possible source of exponential runtime on
K is solving the MCHS problems. Assuming that P 6= NP, there must be some
MCHS instance K on which maxhs will take exponential time and this must
arise when maxhs solves the MCHS problem.

To show that exponential run time can be generated from the number of
iterations required we need the following proposition.
Proposition 1 Let n be an even number and let E = {e1, ..., en} be a universe
of equally weighted elements. Let Kn,r = {κ ⊂ E : |κ| = r} be an instance of the
MCHS problem where r = n

2 . Let K
′ = Kn,r \ κ′ for some κ′ ∈ Kn,r. Then the

MCHS of K′ is strictly smaller than the MCHS of Kn,r.

Example 3. Let F be a maxsat instance with an even number n of soft unit
clauses with weight 1, (x1), ..., (xn) and let the hard clauses of F form a CNF
encoding of the cardinality constraint Σn

i=1xi < n/2. On this family of problems,
an exponential number of cores will always be required by maxhs, as we explain
next. The solutions to F are the truth assignments that set as many of the
variables to true as possible without violating the hard cardinality constraint.
Thus a solution to F will set exactly n

2 − 1 of the xi variables to true and the
rest to false, and n

2 + 1 is the optimal cost. Any subset of the n soft clauses,
with size greater than or equal to n

2 , is a core of F . Therefore, F has at least(
n
n/2

)
cores. By Proposition 1, for any number of cores k <

(
n
n/2

)
, the cost of

their MCHS is less than the optimum. Therefore, maxhs will require at least(
n
n/2

)
cores, which is exponential in n.

However, our empirical observations are much more encouraging. In practice,
we find that the sat solving time is typically small.5 Instead, the performance
of maxhs is most affected by the number of iterations and the time to solve the
MCHS problems. Histograms of the percentage of total runtime spent by the
sat solver and the mip solver are shown in Figure 1 over a set of 4502 Indus-
trial and Crafted instances (the details of the experimental setup are described
in Section 6). In order to study the baseline behaviour of Algorithm 1, the im-
provements presented in prior work [6] are omitted from this implementation.
We observe in Figures 1b and 1d that on instances maxhs failed to solve within
the resource limits, the time spent by cplex is a much larger proportion of the
5 If a maxsat instance is difficult for a state-of-the-art sat solver to refute, then any

maxsat solver that uses a sequence of sat instance approach will be unable to solve
it efficiently.



Non-Core Constraints for maxsat 7

% Time Spent in SAT Solving

F
re

qu
en

cy

Extends to 1400

0
50

10
0

15
0

20
0

25
0

0 20 40 60 80 100

(a) Solved Instances

% Time Spent in SAT Solving

F
re

qu
en

cy

Extends to 1987

0
10

20
30

40
50

0 20 40 60 80 100

(b) Unsolved Instances

% Time Spent in CPLEX Solving

F
re

qu
en

cy
0

20
0

40
0

60
0

80
0

0 20 40 60 80 100

(c) Solved Instances

% Time Spent in CPLEX Solving

F
re

qu
en

cy

Extends to 1922

0
50

10
0

15
0

20
0

0 20 40 60 80 100

(d) Unsolved Instances

Fig. 1: Histograms over 4502 instances of the percentage of runtime spent in sat
solving and in calls to the mip solver cplex, for Algorithm 1.

total runtime than the time spent on sat solving. This is true of the solved
instances as well, as shown in Figures 1a and 1c. Thus we are motivated to find
ways to reduce the time spent solving the MCHS problems, since this has the
greatest potential to reduce the total runtime and thus allow more instances to
be solved.

4 Postponing Optimization

We have seen in the previous section that in practice, the execution time of Al-
gorithm 1 is dominated by its multiple calls to the mip solver. The mip solver
must optimize an NP-hard problem, Minimum Cost Hitting Set, at each itera-
tion. Therefore, in order to improve the performance of maxhs it is natural to
ask if an approximation to MCHS can ever be used instead. In this section we
show that by applying a similar approach to [16] the maxhs algorithm can be
modified to use such approximations, in order to postpone the expensive calls
to the mip solver.



8 J. Davies and F. Bacchus

Algorithm 2: An algorithm for solving maxsat that uses non-optimal hitting sets.

1 MaxHS-nonOPT
(
F
)

2 K = DisjointCores(F)
3 while true do
4 hs = FindMinCostHittingSet(K) /* Find optimal solution */
5 (sat?, κ) = SatSolver(F \ hs)

// If sat, κ contains the satisfying truth assignment.
// If unsat, κ is a new core.

6 if sat? then
7 break // Exit While Loop, κ is a maxsat solution.
8 κ = Minimize(κ)
9 K = K ∪ {κ}

10 nonOptLevel = 0
// Begin a series of non-optimal solutions

11 while true do
12 switch nonOptLevel do
13 case 0
14 hs = FindIncrementalHittingSet(K, κ, hs)
15 case 1
16 hs = FindGreedyHittingSet(K)
17 (sat?, κ) = SatSolver(F \ hs)
18 if sat? then
19 switch nonOptLevel do
20 case 0
21 nonOptLevel= 1
22 case 1
23 break /* Exit inner while loop */
24 else
25 κ = Minimize(κ)
26 K = K ∪ {κ}
27 nonOptLevel= 0
28 return (κ, cost(κ))

The maxhs algorithm from Algorithm 1 can be modified to use non-optimal
hitting set computations, as shown in Algorithm 2. The algorithm operates just
like maxhs in that it terminates at line 7 if F is satisfiable after removing from it
an optimal hitting set (computed at line 4). It varies from Algorithm 1 in that
if a new core κ is discovered at line 5, it enters an inner loop where non-optimal
hitting sets are used in place of optimal ones.

A simpler version of the algorithm uses only one method for computing ap-
proximate hitting sets rather than two. This version, which we explain first, is
obtained from the version shown, by (1) replacing the switch statement on lines
12–16 by only one of lines 14 or 16 (i.e., we perform a single type of approxi-
mate hitting set computation); and (2) replacing the switch statement on lines
19–23 with a break statement. The resultant simpler version repeatedly finds
an approximate hitting set and calls the sat solver again to find a new core.



Non-Core Constraints for maxsat 9

Eventually, the sat solver will fail to find any more cores, the inner loop will be
terminated, and we will return to line 4 where an optimal hitting set will then
be computed. The simple version thus finds as many cores as possible before
optimizing.

The more complex version (as shown) uses two levels of approximation: in-
cremental and greedy. It is assumed that the second level (on line 16) computes a
better (i.e., smaller) hitting set than the first. The idea here is that we compute
a cheap incremental approximate hitting set until the sat solver can’t find any
more cores. Then we compute the more expensive greedy approximate hitting
set, which because it can be smaller might allow the sat solver to find a new core.
If a new core is found, we continue with the cheap incremental approximation
(on line 27 nonOptLevel is reset to zero), until we once again fail to find cores
with the sat solver. If the sat solver fails to find a new core even when using
the more expensive greed approximate hitting set (line 23), the inner while loop
terminates and we finally return to line 4 to compute an optimal hitting set.6

Two other improvements to the basic Algorithm 1 are worth mentioning
(originally presented in [7]). First, at line 2, we can use the sat solver to find a
set of disjoint cores. This is accomplished by blocking every clause in the cores
found so far (by setting the b-variables for the cores’ clauses to true) and finding
another core: the new core will not have any clauses in common with the previous
cores. This can only be done at the start before the main loop finds other cores.
Second, at lines 8 and 25, after each core is found we use the sat solver to
minimize it. This is accomplished by using a simple minimal unsatisfiable core
(MUS) algorithm [17]. This results in a stronger constraint for the mip solver.7

In our implementation we use two different methods for computing approxi-
mate hitting sets, both of which are very cheap. FindIncrementalHittingSet
(line 14), simply adds a clause in the newest core to the current hitting set. The
chosen clause can be any clause in κ: we choose the clause that appears most
frequently in the set K of cores found so far. The intuition for this policy is
that it takes away clauses that appear in many known cores, so that the next
cores found can not use these clauses and thus are more likely to intersect with
only a few of the known cores. The second method of computing non-optimal
hitting sets, FindGreedyHittingSet (line 16), ignores the current hitting set,
and instead applies a standard greedy algorithm for the MCHS problem [12].

Theorem 2. Algorithm 2 returns a solution to the maxsat problem F .

Proof. This proof relies on the same argument as the correctness of Algorithm 1.
If the algorithm returns on line 28, it must have broken out of the outer while loop
at line 7. In this case, κ is a solution of F \hs (by line 5), where hs is a minimum
cost hitting set of K (by line 4). K is a collection of cores of F : it is initialized
on line 2, and augmented only on lines 9 and 26 with κ, a core of F \ hs (thus
6 As can be seen from the algorithm specification we could add more cases to the

switch statements if we had multiple approximation algorithms we wished to use.
7 There are future possibilities for using upper and lower bounds in the algorithm
(e.g., at line 17 if we find a satisfying solution its cost is an upper bound).



10 J. Davies and F. Bacchus

κ is also a core of F). Therefore, if the algorithm returns, by Theorem 1, κ is a
maxsat solution. It remains to show that the algorithm eventually terminates.
Each time SatSolver is called (line 5 or line 17), hs is a hitting set of all cores in
K. So if SatSolver returns a core κ ⊆ F \ hs it must be distinct from all cores
in K. There is a finite number of cores, so SatSolver can not return sat? = false
forever and therefore both while loops must eventually terminate.

5 Additional Enhancements

In previous work we also investigated an alternative approach to reduce the time
maxhs spends in MCHS solving, that was based on using more general, non-
core, constraints [7]. In [7] it is shown that a very effective technique is to seed
cplex with many non-core constraints as a preprocessing step. In this section
we show how seeding can also be applied before Algorithm 2 in order to achieve
the same benefit.

Definition 3. A non-core constraint for maxsat instance F is a linear inequal-
ity constraint over b-variables, c, such that Fbeq |= c.

It is sound to add non-core constraints to the mip model in the maxhs algo-
rithm. This is easy to see from Proposition 2, which states that a minimum bcost
solution to Fbeq corresponds to a maxsat solution, and the fact that the non-core
constraints are entailed by Fbeq. We obtain a theorem similar to Theorem 1.

Theorem 3. If K is a set of core and non-core constraints for the maxsat
problem F , π is minimum bcost assignment to the b-variables that satisfies K,
and π′ is a truth assignment extending π and satisfying Fb then mincost(F) =
bcost(π) and π′ restricted to the variables of F is a maxsat solution.

Proof. Since π is a minimum bcost assignment to the b-variables that satisfies
K, and all constraints in K are entailed by Fbeq, by Proposition 2 mincost(F) ≥
bcost(π). On the other hand, π′ extends π to a satisfying assignment of Fb, and
since π′ sets the same b-variables as π, we have bcost(π′) = bcost(π). So by
Proposition 1, mincost(F) ≤ bcost(π′) = bcost(π). Thus mincost(F) = bcost(π).
Finally, π′ restricted to the variables of F is a maxsat solution by Proposition 1,
since π′ is a minimum bcost satisfying assignment of Fb.

This theorem allows us to modify Algorithm 2 by adding a preprocessing step
that identifies a collection of non-core constraints N as shown in Algorithm 3.
Now, when the mip solver is invoked to find an optimal solution, it no longer
solves a pure MCHS problem because it must take into account the seeded non-
core constraints N in addition to the cores K. On line 6, the mip solver returns
an optimal assignment to the b-variables, A, that is then passed as a set of
assumptions to the sat solver on line 7. Note that the sat solver uses Fb as
input which allows the settings of the b-variables in A to relax the right set of
soft clauses. By Theorem 3, if the sat solver returns a satisfying assignment it



Non-Core Constraints for maxsat 11

Algorithm 3: An algorithm for solving maxsat that uses non-optimal hitting sets
and seeded non-core constraints.
1 MaxHS-nonOPT-seed

(
F
)

2 K = DisjointCores(F)
3 N = NonCoreConstraints(Fb

eq)
4 obj = wt(ci) ∗ bi + . . .+ wt(ck) ∗ bk
5 while true do
6 A = Optimize(K ∪N , obj ) /* Find optimal solution */
7 (sat?, κ) = AssumptionSatSolver(Fb,A)

// Subsequent lines identical to Algorithm 2 lines 6–28

corresponds to the maxsat solution. Otherwise, the sat solver will return a new
core constraint κ. Thus once the main loop begins, no more non-core constraints
will be derived (this differs from the previous work on non-core constraints) and
the rest of the algorithm proceeds as before. The argument that the algorithm
terminates remains the same as well.

Theorem 4. Algorithm 3 returns a solution to the maxsat problem F .

It remains to specify how a collection of non-core constraints are to be found
by NonCoreConstraints. We use Eq-Seeding [7] because it was found to be the
most effective overall. In Eq-Seeding, we exploit the equivalence between original
literals of F that appear in soft unit clauses, and their b-variables. In Fbeq, bi ≡ ¬x
if there is a unit soft clause (x) ∈ F . So to generate a collection of constraints,
we consider each clause c of Fb, and check whether each literal in c has an
equivalent b-literal (or is itself a b-literal). If so, we can derive a new b-variable
constraint from c by replacing every original literal by its equivalent b-literal.
This constraint is a clause over the b-variables that is entailed by F beq and it can
be added to N .

6 Experimental Results

We performed an empirical study of ten existing maxsat solvers: cplex (version
12.2), wpm1 [1], wpm2 (versions 1 and 2 [3]), bincd [10], wbo [15], minimaxsat
[9], sat4j [5], akmaxsat [13], maxhs-Orig [6], and maxhs+ [7]. All of these
solvers are able to solve maxsat in its most general form, i.e., weighted partial
maxsat, and thus have the widest range of applicability. Our study includes
recently developed solvers utilizing a sequence of sat approach (bincd, wpm1,
wpm2, maxhs-Orig and maxhs+), some older solvers (sat4j and wbo), and
two prominent Branch and Bound based solvers (akmaxsat and minimaxsat).
Also included is the mip solver cplex, which is invoked after applying a standard
translation of maxsat to mip [7].

We experiment with three versions of Algorithm 2, that differ by how the
non-optimal hitting sets are computed. The first and second versions use the



12 J. Davies and F. Bacchus

MaxHS-eval13
MaxHS+
CPLEX
minimaxsat
bincd
wpm1
wpm2v2
MaxHS-Orig
wpm2v1
wbo
akmaxsat
sat4j

Ti
m

e 
(s

)

0

250

500

750

1000

1250

Number of Instances Solved
1500 2000 2500 3000 3500 4000

Fig. 2: Performance of solvers on all Crafted and Industrial instances.

simple form of Algorithm 2 where only one method for computing approximate
hitting sets is used. The first version, maxhs-incr, uses FindIncrementalHit-
tingSet for this computation, and the second version, maxhs-greedy, uses
FindGreedyHittingSet. The third version is called maxhs-incr-greedy and it
uses the more complex version of Algorithm 2, as specified in the pseudo-code.
Finally, we also experiment with the version described in Section 5 that adds Eq-
Seeding to maxhs-incr-greedy. This version uses the same algorithm as the solver
submitted to the 2013 maxsat Evaluation, and will be called maxhs-eval13.8

We obtained all problems from the previous seven maxsat evaluations [4],
discarding all instances in the Random category. After removing duplicate prob-
lems (as many as we could find) we ended up with 4502 problems divided into
58 families.9 The family names and the number of instances in each family are
shown in Tables 1 and 2. Our experiments were performed on 2.1 GHz AMD
Opteron machines with 98GB RAM shared between 24 cores (about 4GB RAM
per core). Each problem was run under a 1200 second timeout and with a mem-
ory limit of 2.5GB.

The overall results are shown in Figure 2. We see that the earliest maxhs-
Orig is a reasonable but not distinguished solver. The improvement presented
in [7], maxhs+, is a very good solver being slightly better over all problems
than any previous solver. Finally, we see that the best of the versions developed

8 All versions of maxhs in this study use minisat-2.0 and cplex version 12.2. The
solver submitted to the 2013 Evaluation uses cplex version 12.5 and it performs
slightly better than the version we report on here.

9 We include results on 17 families within the Crafted category that were omitted
in [7].



Non-Core Constraints for maxsat 13

Family # mini cplex wpm1 bincd maxhs
Orig + Alg. 2 Alg. 3

incr grdy i+g eval 13
ms/Safar 112 3 19 88 71 75 33 33 34 33 33

ms/circdebug 9 0 1 9 7 9 3 4 3 4 3
pms/bcp-fir 59 13 58 53 55 16 18 32 18 33 33

pms/bcp-msp 148 108 110 60 117 62 121 90 87 95 123
pms/bcp-mtg 215 208 193 215 215 150 212 215 214 215 215
pms/bcp-syn 74 27 71 40 45 65 71 69 69 69 71

pms/pb/logic-syn 17 2 16 7 7 16 16 16 16 16 16
pms/pbo-rout 15 14 14 15 15 10 13 12 10 10 13

pms/pseudo/rout 15 14 15 15 15 7 15 11 11 10 12
pms/circtracecomp 4 1 0 3 4 0 0 0 1 1 1

pms/pb/primes 86 76 78 46 76 59 80 77 74 78 81
pms/pb-nencdr 128 64 23 69 116 48 104 118 128 128 127

pms/pb-nlogencdr 128 103 24 88 128 78 111 128 128 128 128
pms/aes 7 1 2 0 1 1 2 2 2 3 2

pms/hap-asmbly 6 0 2 4 0 5 5 5 5 5 5
pms/bcp-hipp 1183 982 962 1154 1164 1125 1142 1141 1138 1137 1140

wpms/haplo-ped 100 0 9 91 23 27 28 26 33 25 22
pms/protein-ins 12 11 1 1 2 1 1 2 1 2 2

wpms/protein-ins 12 10 1 1 2 1 2 2 1 2 1
wpms/timetabling 32 0 0 13 12 9 8 7 7 7 6

wpms/upgrade 100 0 100 100 97 100 100 100 100 100 100
wpms/up-u98 80 0 80 80 79 80 80 80 80 80 80

Total 2542 1637 1779 2152 2251 1944 2165 2170 2160 2181 2214
Indust + Craft Total 4502 3130 3249 3097 3106 2682 3257 3288 3297 3419 3578

Table 1: Results for the Industrial category instances. Shows the number of
instances solved by each solver in each benchmark family. The final row gives the
total number of instances solved over both the Industrial and Crafted categories.

in this paper, maxhs-eval13 achieves a significant performance improvement.
Although not shown on the plot, the other versions we develop here all improve
over maxhs+, but are not as good as maxhs-eval13 (see Tables 1 and 2).

The results are broken down by benchmark family in Tables 1 and 2. In-
cluded in the tables are the four competing solvers that performed best overall
(as shown in Figure 2): cplex, minimaxsat, bincd and wpm1. Observe that
all versions of maxhs that use non-optimal hitting sets (Alg. 2 and Alg. 3)
outperform maxhs+, which uses non-core constraints more extensively than
maxhs-eval13. Yet when the technique of seeding the mip model with non-core
constraints is added to the use of non-optimal hitting sets, performance is im-
proved (see “Alg. 2 i+g” vs. “Alg. 3 eval 13”). We see that on the industrial
problems (Table 1) there is still quite a lot of variance in performance between
the different solvers across the different families; that maxhs-eval13 has fairly
robust good performance across the different families; and that the maxhs ap-
proach can be significantly better than just using cplex alone, indicating the
value of our hybrid approach. On the crafted problems (Table 2) we see that the
Branch and Bound approach of minimaxsat is most effective. These problems
tend to be smaller than the industrial problems and have tightly interacting vari-
ables yielding cores containing a large fraction of the total clauses. The data also



14 J. Davies and F. Bacchus

Family # bincd wpm1 cplex mini maxhs
Orig + Alg. 2 Alg. 3

incr grdy i+g eval 13
*ms/spin 20 0 0 19 20 0 0 1 4 10 10

*ms/cut/spin 5 1 1 3 3 0 1 1 2 2 2
*wms/cut/spin 5 0 0 4 4 0 1 1 2 3 3

*pms/frb 25 0 0 9 5 0 8 5 0 5 9
*wms/kexu/frb 35 9 5 20 15 10 20 16 15 15 20
*pms/csp/sprsls 20 20 20 20 20 19 11 20 20 20 20
*pms/csp/dsls 20 20 16 20 20 5 0 15 15 16 16

*pms/csp/sprstgt 20 20 20 20 20 0 0 15 12 20 20
*pms/csp/dstgt 20 19 19 20 20 0 0 3 6 20 20

*ms/ramsey 48 34 34 34 35 34 34 34 34 34 34
*wms/ramsey 48 36 34 36 37 34 35 34 34 34 34
*pms/clq/rand 96 67 0 96 96 4 96 4 44 59 96
*ms/bcut-630 100 0 0 0 83 0 0 0 0 0 0
*pms/kbtree 54 15 14 54 22 11 15 12 12 12 14

*pms/max1/3sat 80 80 71 80 80 20 80 45 44 57 80
*ms/cut/rand 40 0 0 4 40 0 0 0 0 0 0

*wms/cut/rand 40 0 0 12 40 0 0 0 0 0 0
ms/cut/dimacs 62 6 5 20 48 4 4 4 4 4 3

wms/cut/dimacs 62 4 5 22 55 3 3 4 5 8 9
pms/max1/struc 60 59 30 52 60 5 60 54 57 60 60
pms/clique/struc 62 18 8 32 36 10 29 12 17 17 34

pms/queens 7 7 7 7 7 2 3 5 4 5 5
wpms/QCP 25 25 25 25 20 25 25 25 25 25 23

pms/pb/gardn 7 5 5 6 5 5 6 5 6 6 6
wpms/pb/mip 16 7 6 6 5 6 7 7 7 7 5

wpms/pb/factor 186 186 168 186 186 186 186 186 186 186 172
wpms/KnotPip 350 0 161 245 117 57 52 290 260 290 289
wpms/spot5log 21 11 12 6 4 6 6 6 6 6 6
wpms/spot5dir 21 11 10 17 3 6 6 6 6 6 6
pms/jobshop 4 4 3 0 2 4 3 4 4 4 4
wpms/plan 71 65 64 70 71 46 71 71 71 71 61

wpms/aucreg 84 6 0 84 84 34 84 4 13 2 76
wpms/aucsch 84 66 84 84 84 82 84 76 77 78 75

wpms/aucpath 88 0 52 88 88 88 88 88 88 88 78
wpms/ware 18 1 14 18 2 1 18 9 1 12 18
wpms/plan 56 53 52 51 56 31 56 56 56 56 56

Total 1960 855 945 1470 1493 738 1092 1118 1137 1238 1364
Indust + Craft Total 4502 3106 3097 3249 3130 2682 3257 3288 3297 3419 3578

Table 2: Results for the Crafted category instances. Shows the number of instances
solved by each solver in each benchmark family. The benchmark families with an as-
terisk (*) are those we classify as having “random” structure [7]. The final row gives
the total number of instances solved over both the Industrial and Crafted categories.



Non-Core Constraints for maxsat 15

% Time Spent in CPLEX Solving
F

re
qu

en
cy

Extends to 1781

0
20

0
40

0
60

0
80

0

0 20 40 60 80 100

(a)

% Time Spent in CPLEX Solving

F
re

qu
en

cy
0

10
0

20
0

30
0

40
0

50
0

0 20 40 60 80 100

(b)

% Time Spent in CPLEX Solving

F
re

qu
en

cy

Extends to 1677

0
20

0
40

0
60

0
80

0

0 20 40 60 80 100

(c)

% Time Spent in CPLEX Solving
F

re
qu

en
cy

0
10

0
20

0
30

0
40

0
50

0

0 20 40 60 80 100

(d)

Fig. 3: Histograms over all instances for the percentage of runtime spent in calls
to cplex for Algorithms 2 and 3. (a) Alg. 2, solved instances; (b) Alg. 2, unsolved
instances; (c) Alg. 3, solved instances; (d) Alg. 3, unsolved instances.

shows that although the traditional sequence of sat solvers bincd and wpm1
do not perform particularly well on these problems, cplex is quite effective, as
is the hybrid approach of maxhs.

The good performance of maxhs-incr-greedy and maxhs-eval13, implement-
ing Algorithms 2 and 3 respectively, appears to be due to a significant reduction
in the total time spent by cplex. In Figure 3 we show the percentage of the
total runtime that was spent in calls to cplex. Comparing these histograms to
those in Figure 1, we observe that the time spent solving the MCHS problems
to optimality is now almost always a low percentage of the total runtime. The
number of calls to cplex generally decreases when we use non-optimal hitting
sets, as expected. On average (over all 4502 instances), each run of maxhs-incr-
greedy gave a total of 5419 constraints to cplex but solved the optimization
problem only 14 times. In contrast, each run of Algorithm 1 gave on average
only 972 cores to cplex, thus having to solve the MCHS problem 972 times.

In conclusion, we have presented a technique for improving the hybrid maxhs
approach to solving maxsat. Our method yields an improvement in the state-of-
the-art for maxsat solving. Although our method successfully shifts the balance
of the runtime away from the mip solver, a promising avenue for future work is
to examine the structure of the constraints given to the mip solver to see if they
could be made more effective.

Acknowledgements This work has been partly funded by the “Agence na-
tionale de la Recherche”, reference ANR-10-BLA-0214.



16 J. Davies and F. Bacchus

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted
maxsat solvers. In: Principles and Practice of Constraint Programming (CP). pp.
86–101 (2012)

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Proceedings of Theory and Applications of Satisfiability
Testing (SAT). pp. 427–440 (2009)

3. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat.
In: Proceedings of the AAAI National Conference (AAAI). pp. 3–8 (2010)

4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxsat evaluations (2007–2011),
http://www.maxsat.udl.cat

5. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010)
6. Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat in-

stances. In: Principles and Practice of Constraint Programming (CP). pp. 225–239
(2011)

7. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MAXSAT. In:
Proceedings of Theory and Applications of Satisfiability Testing (SAT) (2013)

8. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of Theory and
Applications of Satisfiability Testing (SAT). pp. 502–518 (2003)

9. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat
solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

10. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of the AAAI National Conference
(AAAI). pp. 36–41 (2011)

11. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Op-
erations Research 55(3), 588–602 (2007)

12. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Sympo-
sium on Theory of Computing. pp. 38–49 (1973)

13. Kügel, A.: Improved exact solver for the weighted Max-SAT problem. In: Workshop
on the Pragmatics of SAT (2010)

14. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in maxsat. Constraints 15(4), 456–484 (2010)

15. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Proceedings of Theory and Applications of Satisfiability Testing
(SAT). pp. 495–508 (2009)

16. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
Operations Research 61(2), 453–468 (March-April 2013)

17. Silva, J.P.M., Lynce, I.: On improving mus extraction algorithms. In: Proceedings
of Theory and Applications of Satisfiability Testing (SAT). pp. 159–173 (2011)


