Skip to main content

Postponing Optimization to Speed Up MAXSAT Solving

  • Conference paper
Principles and Practice of Constraint Programming (CP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8124))

Abstract

maxsat is an optimization version of sat that can represent a wide variety of important optimization problems. A recent approach for solving maxsat is to exploit both a sat solver and a Mixed Integer Programming (mip) solver in a hybrid approach. Each solver generates information used by the other solver in a series of iterations that terminates when an optimal solution is found. Empirical results indicate that a bottleneck in this process is the time required by the mip solver, arising from the large number of times it is invoked. In this paper we present a modified approach that postpones the calls to the mip solver. This involves substituting non-optimal solutions for the optimal ones computed by the mip solver, whenever possible. We describe the new approach and some different instantiations of it. We perform an extensive empirical evaluation comparing the performance of the resulting solvers with other state-of-the-art maxsat solvers. We show that the best performing versions of our approach advance the state-of-the-art in maxsat solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: Proceedings of the AAAI National Conference (AAAI), pp. 3–8 (2010)

    Google Scholar 

  4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxSAT evaluations (2007–2011), http://www.maxsat.udl.cat

  5. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–64 (2010)

    Google Scholar 

  6. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MAXSAT. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of the AAAI National Conference (AAAI), pp. 36–41 (2011)

    Google Scholar 

  11. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Operations Research 55(3), 588–602 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Symposium on Theory of Computing, pp. 38–49 (1973)

    Google Scholar 

  13. Kügel, A.: Improved exact solver for the weighted Max-SAT problem. In: Workshop on the Pragmatics of SAT (2010)

    Google Scholar 

  14. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds in maxsat. Constraints 15(4), 456–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve combinatorial optimization problems with an application to multigenome alignment. Operations Research 61(2), 453–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, J., Bacchus, F. (2013). Postponing Optimization to Speed Up MAXSAT Solving. In: Schulte, C. (eds) Principles and Practice of Constraint Programming. CP 2013. Lecture Notes in Computer Science, vol 8124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40627-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40627-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40626-3

  • Online ISBN: 978-3-642-40627-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics