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Abstract. We present an application of constraint logic programming to
create multiple-choice questions for math quizzes. Constraints are used
for the configuration of the generator, giving the user some flexibility
to customize the forms of the expressions arising in the exercises. Con-
straints are also used to control the application of the buggy rules in
the derivation of plausible wrong solutions to the quiz questions. We
developed a prototype based on the core system of AGILMAT [18]. For
delivering math quizzes to students, we used an automatic evaluation fea-
ture of Mooshak [8] that was improved to handle math expressions. The
communication between the two systems - AgilmatQuiz and Mooshak
- relies on a specially designed LATEX based quiz format. This tool is
being used at our institution to create quizzes to support assessment in
a PreCalculus course for first year undergraduate students.

1 Introduction

Mathematics assessment should help both student and teacher to understand
what the student knows, and to identify areas in which the student needs im-
provement [14]. As a diagnostic means for assessing conceptual understanding
and procedural fluency, multiple-choice tests are quite popular. They can be
given and graded at low cost, in contrast to tests with open-answer questions.
Nevertheless, their construction remains a time-consuming task. It can get easier
when some authoring tool and a bank of questions can be used to produce the
tests. There exist hundreds of exercise assistants. The use of a bank of ques-
tions, or of templates with parameters that can be randomly instantiated to
create variants of the exercises is the most common approach in the design of
systems that provide either interactive drills or multiple-choice tests for math-
ematics (e.g., [11,12,15,20,23,25]). The use of collections of semantically anno-
tated mathematical learning objects is a trend [23,24]. Very often, the exercise
systems provide worked out solutions for the drills or automatic feedback that is
somehow hardwired to the problem model, even if encoded as a solution graph.
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When the intended answer is a mathematical expression, some systems give au-
tomatic feedback by making use of computer algebra systems or specific domain
reasoners to diagnose the student answer [5,12,23] or to give hints [1,5,21]. This
is useful for formative assessment (i.e., for self-assessment or assessment that is
not directly contributing to the student grade). A similar feedback may be given
for interactive multiple-choice questions, based on the analysis of individual re-
sponses and on the particular exercise model [5,12].

In [17], we proposed a novel approach for creating the drills, and adopted
it for developing the AGILMAT prototype1. Instead of fixing the template of
the parametric expression that is included in the question generator model [11],
we focused on the algebraic procedures students know or learn in order to ab-
stract and restrict the expressions in the questions. For that purpose, we tried
to understand how the curricula contents condition the drills. This approach is
feasible when we consider routine exercises about some topics, and their one-line
solutions [17] or step-by-step solutions [1]. In AGILMAT, the expressions aris-
ing in drills are specified by constrained grammars and refined by some default
profiles and possible user options (see Fig. 1). This is a distinguishing feature

Fig. 1. The AGILMAT prototype available on the web. The notation ]a, b[ and [a, b[ is
employed instead of (a, b) and [a, b) to represent intervals of real numbers

and an advantage of our work, making possible the generation of a large number
of (non-trivial) examples. For a concise explanation on how this is done, please
refer to section 2. A more detailed description can be found in [17,18]. Such

1 http://www.dcc.fc.up.pt:8080/Agilmat

http://www.dcc.fc.up.pt:8080/Agilmat
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feature gives the user great flexibility to control the forms of the expressions.
The system can produce automatically very different expressions or several ex-
pressions with the same pattern. The drills are always created and solved on the
fly, if the cache option (see Fig. 1) is turned off.

1.1 AgilmatQuiz

In this paper, we describe AgilmatQuiz, the prototype we developed for produc-
ing multiple-choice questions for a Pre-Calculus course2. This course is being
offered at our institution to the first year undergraduate students lacking the re-
quired mathematical background. AgilmatQuiz is based on an extension of the
AGILMAT core system. Fig. 2 presents a screenshot of an exercise sheet, where
questions 9 to 12, among some others, were produced using AgilmatQuiz.

Fig. 2. Multiple-choice exercises about the notions of reciprocal image (9), range (10)
and domain (11) of real valued algebraic functions, created by our system to a quiz

New types of expressions and of exercises were introduced. In particular, we
were asked to create exercises about disjunctions and conjunctions of simple
linear constraints, an extension that was quite easy. We were asked to create
exercises involving piecewise-defined functions. This raises some difficulties that

2 Please access http://www.dcc.fc.up.pt/~apt/Research/AgilmatQuiz.html to see
more examples of questions created by our system.

http://www.dcc.fc.up.pt/~apt/Research/AgilmatQuiz.html
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we discuss in the paper. The questions created automatically cover essentially al-
gebraic functions taught at high-school, the notions of domain, range, reciprocal
image, piecewise-defined functions and the solution of equations and inequal-
ities. Some questions about other topics were written by colleagues from the
Mathematics Department.

For delivering math quizzes to students, we used Mooshak3, a web based com-
petitive learning system. Mooshak was originally developed for managing pro-
gramming contests over the Internet under the ACM International Collegiate
Programming Contest rules [8]. Quiz delivery is one of the educational features
it supports currently. For AgilmatQuiz, it was improved to handle math expres-
sions. The quiz questions are structured into groups and written in a specially
designed LATEX based quiz format. LATEX is widely used in academia and there-
fore it made easier also the collaboration of our colleagues who were creating
some questions by hand.

The rest of the paper is structured as follows. In section 2, we describe the
main lines of the approach followed in AGILMAT and for the quiz generation. In
section 3, we address the main changes introduced in the AGILMAT core system
to be able to produce quiz questions. In section 4, we explain how the Mooshak
system supports quiz delivery and grading. Section 5 concludes the paper.

2 Creating Drills Using AGILMAT

In the AGILMAT core system there are two main modular components – the
expression generator and exercise generator and solver – which were implemented
using Prolog based constraint programming languages. The expression generator
processes the user constraints and produces a file with expressions and their
types (i.e., templates). The exercise generator and solver processes this file and
produces exercises (according to a specification) and their solutions. This module
makes use of several submodules that handle arithmetic, set operations and
symbolic constraints (to solve inequations, disequations and equations), along
the lines we described in [17]. It uses also some modules for computing limits and
derivatives of functions, performing simplications, and obtaining the image of a
function when applied to a set (or an upper bound on this image). In addition,
it uses a module for converting the internal representations of the exercises to
LATEX, as well as their solutions.

Each exercise produced by the AGILMAT prototype has a question where a
function expression is required. The expressions are built from polynomial func-
tions, the absolute value function x → |x|, and the power and radix functions
x → xn and x → n

√
x, possibly using composition, addition, product and quo-

tient operations. In the implementation of the expression generator, we follow
the grammar proposed in [17] for the expressions. This grammar characterizes
a wide range of algebraic expressions found in high school textbooks and whose
zeros can be exactly computed by an algorithm students learn. To illustrate
the main ideas, we present a fragment in Fig. 3. The category sumexpr denotes

3 http://mooshak.dcc.fc.up.pt

http://mooshak.dcc.fc.up.pt
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prodexpr −→ factor | factor ∗ prodexpr
factor −→ sumexpr | basic
basic −→ ipol2(x) | bisqr

−→ fbasic | fpol1(fbasic) | fpol1(x)
fbasic −→ abs(basic) | pow(basic,N) | rad(basic,N)

ipol2(T ) −→ pol(T,[a, b, c]), abc �= 0
fpol1(T ) −→ pol(T,[a, b]), a �= 0
bisqr −→ ipol2(pow(x, N)), N ≥ 2

Fig. 3. An fragment of the grammar proposed in [17]

some particular forms of sum expressions. We can see that 3
√
(5x− 1)2 and√

(2x+ 3)5 are expressions of the category basic and instances of N
√
(ax+ b)M .

This is rewritten as rad(pow(pol(x, [a, b]),M), N) and the expressions of this
form are characterized by the pattern rad(N) o pow(M) o p1 o x. Composi-
tion, denoted by ◦, is the main operation. The generation of expressions for the
exercises is driven by the generation of their patterns.

Each pattern, called type, is represented by a Prolog term with finite domain
variables. These variables bind the exponents and, hence, can be constrained
to tailor the expressions to specific needs. For example, if we need exercises
about the quadratic function, we can constrain the degree of the expression to
be two. The exponents are instantiated when the system creates an instance of
the expression. Below, we show two other examples of couples of patterns and
expressions produced by our generator, their internal representations and usual
typesetting.

rad(3)o(abs o p1 o pow(2)o p1 o x + pow(2)o p1 o x)

rad(abs(pol(pow(pol(x,[3,-4]),2),[-4,-2])),3) + pow(pol(x,[1,-3]),2)

3
√

| − 4(3x− 4)2 − 2|+ (x− 3)2

pow(7)o ip(1)o(p1 o x/p1 o x)

pow(pol(pol(y,[-2,-1])/pol(y,[-3,4]),[-2,3]),7)

(
−2

−2y − 1

−3y + 4
+ 3

)7

Here, ip(1) is the internal pattern of expressions of the form pol(T ,[a, b]),
with a and b non-null, whereas, p1 corresponds to pol(T ,[a, b]), with b unre-
stricted. The variable in the expression is not relevant for the template and is
passed as a parameter to the generator.

Each type can be used by the system to generate a single or several exercises
of the same type. In this way, the difficulty level of the distinct versions would be
similar as they are instances of the same template (only coefficients change). This
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can be important for grading. Nevertheless, for self-assessment or practice, drills
with very different expressions favour the learning of concepts and properties
instead of focusing on very specific methods for particular instances.

By setting parameters of the generator, the user can refine the types created.
Some parameters are used to define constraints on the number of occurrences of
each primitive function and of some categories, and also to enforce constraints
on the difficulty level of the expressions. The latter is modeled as a weighted sum
of the difficulty rates assigned to the primitive functions and some distinguished
forms of constructs.

The prototype available on the web (see Fig. 1) allows some customization
by default profiles but also by parameters that can be refined by the user. For
further details, please refer to [17,18]. However, this is fairly less than what a user
that knows CLP can do by interacting directly at the low level. The interface
was kept simple because a preliminary version where users could tune several
finer parameters was found too complex by a focus group of teachers.

The generator is implemented in a Prolog based constraint programming lan-
guage and runs on top of the SICStus Prolog system [26]. The constraints act
on finite domain variables associated to the types. In general, the grammar rules
were implemented by predicates of the form

category(Type,Degree,Rate,CountTypes,CountOps)

where Degree, Rate, CountTypes, CountOps are parameters used to constrain
the generated Type. For example, for the prodexpr type, we can have:

prodstype(T,G,Rate,CTs,Ops) :-

constrs(CTs,urestrs_factor),factorstype(T,G,Rate,CTs,Ops).

prodstype(Tb*T,G,Rate,CTs,Ops) :-

rate_restr(prodstype,Rate,[RateB,RateT]),

types_restr(prodstype,CTs,[CTsB,CTsT]),

ops_restr(Ops,[1,OpsB,OpsT]), OpsT #=< OpsB,

Gb #>= 1, Gt #>= 1, G #= Gt+Gb,

constrs(CTsB,urestrs_factor),factorstype(Tb,Gb,RateB,CTsB,OpsB),

prodstype(T,Gt,RateT,CTsT,OpsT).

where constrs/2, rate_restr/3 and ops_restr/2 impose new constraints on
subtypes, rates and number of operators. Here, OpsT #=< OpsB is added to
discard some symmetries. The user can define the rate value of the primitive
functions (e.g., p1, p2, abs, rad(_), pow(_), . . . ) and of particular subex-
pressions (e.g., sums of radicals, quotients and products), through a predicate
user_rate/2, used by rate_restr/3.

rate_restr(T,Rate,L) :- nonnegative(L), user_rate(T,Rt),

sum([Rt|L],#=,Rate).

The parameter CountTypes is a list of finite domain variables, each one giving
the number of occurrences of a given type and the user can define constraints
on the values of these counters. Such constraints are imposed by constrs/2 and
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can involve a single variable (e.g., to specify its domain), or any subset of them,
and are specified by predicates.

constrs(CTs,Functor) :- Goal =.. [Functor,CTsConstr], call(Goal),

single_vars_low_up_constrs(CTsConstr,CTs),

user_other_restrs(Functor,CTs).

The Goal is a user-defined predicate that instantiates CTsConstr to a list of terms
of the form I-[Low,Up]. This list is passed to single_vars_low_up_constrs/2

to add new constraints on the lower and upper bound values of the variable asso-
ciated to key I. The definition of user_other_restrs/2 can be less trivial, and
may be used to state more complex constraints on subsets of the variables. Still,
the configuration constraints are usually simple value or arithmetic constraints,
lower and upper bound cardinality constraints or conditional constraints, such
as l ≤ xi ≤ u, l ≤ ∑

i∈I1
xi ≤ u, and

∑
i∈I1

xi ≥ l ⇒ ∑
i∈I2

xi ≤ u, where xi

denotes an integer variable, usually a counter.
From the definition of prodstype/5, we can see that the underlying CSP

model is not a classic model, with a fixed static collection of variables and con-
straints. This happens very often in configuration problems [4,7]. In our applica-
tion, new variables and constraints are added during the execution (e.g., the ones
corresponding to RateB, RateT, OpsB, OpsT, Gt, Gb, and some variables in the
lists CTsB and CTsT). We are not using global constraints in our application, al-
though domain filtering algorithms for open global cardinality constraints have
been investigated [9,19], for some dynamic CSPs. Considering the underlying
execution model and the fact that the CSP model is rather dynamic, that will
result in a burden without any payoff.

The expression generator produces a file of instances of expressions and
their types. A call to examples(File,DegreeI,RateMin-RateMax,X,NumbInst)
yields a File of expressions in the variable X, with NumbInst instances of each
type. The degree of the expressions is DegreeI (and can be undefined) and the
difficulty level is within RateMin-RateMax, which are positive integers.

In AGILMAT, such a file can be passed to the exercise generator and solver
to create a sheet of exercises and their one-line solutions. We developed specific
solvers to be able to handle some nonlinear constraints (in a real-valued vari-
able) and compute exact solutions. A numerical approximation would not be
a correct answer usually. Our solvers perform symbolic manipulations and the
rules applied emulate steps students may take.

3 Extensions for AgilmatQuiz

The major extensions carried out in this work involved the two main modules,
and consisted of:

– the definition of new forms of expressions;
– the modification of the symbolic solver to produce plausible wrong answers;
– the definition of new exercises and strategies for choosing the wrong answers.
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In the design of AGILMAT and of this extension, we kept in mind the basic prin-
ciple that we do not need to support full generality in order to obtain an useful
tool. This allows us to partially circumvent some inherent theoretical difficulties
of this work, including the ones due to the undecidability of some computer al-
gebra problems [2,10]. We observe that, very often, the topics focused on in the
literature are comparatively very well-behaved, with well-known canonical forms
and solving algorithms (e.g., elementary school arithmetics [22], operations with
fractions, linear constraints in a single variable, systems of linear equations, and
so forth).

Since the type of the expression acts as a template, the AGILMAT prototype
can be used to compute one or more expressions of each type. This feature makes
easier the creation of several instances of the same question. This is useful for
obtaining multiple-choice tests of the same difficulty level, although this is not
too important or even desirable when the tests are used for self-assessment.
The separation of the generation of types (templates) from the generation of
the instances of the expressions provides the flexibility we need to deal with
these two cases. By enforcing constraints on the difficulty level of the types
of expressions, we can control the expressions that occur in the questions. This
feature is important for multiple-choice questions since, usually, the student must
find the answer to the question in a short time.

Besides some simple adjustments, such as the ones needed to create questions
about conjunctive and disjunctive constraints, we focused on the generation of
expressions for piecewise-defined functions. This is more challenging than the
generation of simple expressions, as we need to split the function domain and
control the way the different branches fit or do not fit.

3.1 Creating Expressions for Piecewise-Defined Functions

Although we could look at this problem as a constraint problem, devising its
solution could be tricky, because we also have to create expressions that are
interesting from the pedagogical point of view. This means that the numbers
arising in the expression and the breaking points cannot be too scary.

We extended the generator to include a new type piecewise(L), where L is
the list of types of the branches. For the corresponding expression, we use a simi-
lar notation except that each branch is identified by a term br(Expr,DomExpr).
Below, we show an example of a type and an expression of that type. Actually,
the expression is still a partial expression as the domain of each branch is a free
variable, represented by the underline character (adopting the Prolog notation).

piecewise([abs o p1 o x,p1 o x]).

piecewise([br(abs(pol(x,[-2,-1])),_),br(pol(x,[-5,-4]),_)]).

{ | − 2x− 1| if x ∈ ?
−5x− 4 if x ∈ ?
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We decided to fix the coefficients of the functions first and then fix the do-
main of each branch, taking into account the points where the functions meet
(although it is possible that the branches do not meet for some other functions).
This made the extension of the generator easier. Besides and more importantly,
in this way we avoid cumbersome coefficients in the resulting expressions, and
therefore obtain expressions that resemble the ones defined by teachers. The
quality and variability of questions created by AgilmatQuiz was one of the is-
sues that our colleagues appreciated.

For affine and quadratic functions, the candidate breakpoints can be com-
puted easily by solving an equation. For some other functions, to be able to
guarantee that the resulting function is continuous at a breakpoint, we often
need to compute lateral limits and, quite likely, to replace some coefficients (e.g.,
of the constant branches). For instance, fk(x), defined below, is continuous iff
the constant k is zero, since limx→1+ fk(x) = 0.

fk(x) =

{ x−1√
x−1

if x > 1

k if x ≤ 1

For the example given above, the complete expression yielded by the system
was the following one, which means that the two branches actually meet.

piecewise([abs o p1 o x,p1 o x]).

piecewise([br(abs(pol(x,[-2,-1])),[a(-(infty)),a(rat(-1,1))]),

br(pol(x,[-5,-4]),[f(rat(-1,1)),a(infty)])]).

{ | − 2x− 1| if x ∈ ]−∞,−1[
−5x− 4 if x ∈ [−1,∞[

It is possible that the system selects another breakpoint. With some probabil-
ity, fixed in the implementation, the points where the functions meet would
not be selected as breakpoints. In our current implementation, the search for
breakpoints that may guarantee continuity is supported for affine and quadratic
functions, for example, but we are not reasoning about limits. For the remaining
functions, the implementation ensures that the domain of every branch is non-
empty by defining breakpoints in the intersection of the domains of the primitive
functions, preferentially.

In the implementation, the difficulty rate of a piecewise-defined function is
determined by the difficulty rate of the branch that has the highest rate and the
total number of branches. A constraint is imposed on the weight of each new
branch, so that it does not exceed the half of the previous one.

3.2 Solutions and Distractors

For generating a set of plausible wrong answers (i.e., distractors) for a quiz
question, we modified the symbolic solver and some of its submodules to include
buggy algebraic rules that translate known common errors or misconceptions.
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For that purpose, we augmented the signature of some of the predicates with a
new argument that acts as a constrained variable. By imposing constraints on
this variable we can restrict and track the number of wrong rules applied in the
derivation of an answer. In this way, the same predicate can be used to compute
the correct solution if we restrict the value of the variable to be zero. To explain
better what we mean, we give a fragment of the initial implementation of the
predicate domain_expr(Expr,X,Dom,DomExpr), which determines the domain
DomExpr of an expression Expr in the variable X when X could only take values
in the subset Dom of the real numbers.

domain_expr(X,X,Dom,Dom) :- !.

domain_expr(pol(U,_L),X,Dom,Domf) :- !, domain_expr(U,X,Dom,Domf).

domain_expr(rad(U,N),X,Dom,Domf) :- !,

(even(N) ->

(domain_expr(U,X,Dom,DomU),solve(DomU,U,geq,rat(0,1),X,Domf));

domain_expr(U,X,Dom,Domf)).

The first rule is equivalent to saying that the identity function defined in the
set Dom has domain Dom. The second rule basically says that the domain of the
composition of a polynomial function and a function U of X is the domain of U in
Dom. Finally, the third rule defines the domain of N

√
U either as DomU if N is odd

or as the solution set of U ≥ 0 in DomU if N is even.
For the new version, wrg_domain_expr(Expr,X,Dom,DomExpr,W), we added

an extra argument W, that is a constraint variable, and add extra rules, which
mimic frequent errors, known by experienced teachers.

wrg_domain_expr(X,X,Dom,Dom,W) :- {W = 0}.

wrg_domain_expr(X,X,Dom,[a(-infty),a(infty)],Wf) :- !,

{Wf = 1}, Dom \= [a(-infty),a(infty)].

wrg_domain_expr(pol(U,_L),X,Dom,Domf,Wf) :-

{Wf >= 0}, wrg_domain_expr(U,X,Dom,Domf,Wf).

wrg_domain_expr(pol(U,_L),X,Dom,Domf,Wf) :- !,

{Wf = 1, Ok = 0},

wrg_domain_expr(U,X,Dom,DomS,Ok),

DomS \= [a(-infty),a(infty)], Domf = [a(-infty),a(infty)].

wrg_domain_expr(rad(U,N),X,Dom,Domf,Wf) :- even(N), !,

{Wi >= 0, Wii >= 0, Wf = Wi+Wii},

wrg_domain_expr(U,X,Dom,DomU,Wi),

( wrg_solve(DomU,U,geq,rat(0,1),X,Domf,Wii);

({Wii = 1}, Domf = DomU) ).

wrg_domain_expr(rad(U,_N),X,Dom,Domf,Wf) :- !, % N is odd

{W >= 0, Wi >=0, Wf = W+Wi},

wrg_domain_expr(U,X,Dom,Domi,W),

((({Wi=0}, Domf = Domi);

({Wi=1}, Domf = Dom, Domi \= Dom);

({Wi=1+Wii,Wii>=0}, wrg_solve(Domi,U,geq,rat(0,1),X,Domf,Wii))).
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The constraint variable4 is used to control the number of buggy derivation
rules applied. If W is bounded to be zero, the predicate produces the correct
answer, as before.

Now, the second rule is buggy since it ignores the given domain and yields R
as the answer (the representation of R is [a(-infty),a(infty)]). For instance,
if the stem asks for “the domain of f : R+

0 → R given by f(x) = 3x + 1”, the
correct answer is R

+
0 and a derivation applying the third clause and then the

second one produces R.
The fourth rule is buggy for a similar reason, as it ignores the restrictions

imposed both by Dom and the domain of U, and returns R as the answer. For
instance, for g : R → R given by g(x) = 5

√
x− 4 + 3”, the answer is [4,∞[ but

a derivation using the fourth clause yields R.
In the fifth clause, the last branch is buggy and can produce a wrong answer

(e.g., R for
√
x− 4 instead of [4,∞[). Finally, the last rule is buggy and produces

a distractor if the solution set of U ≥ 0 in Domi differs from the correct answer
(e.g., for 3

√
x− 4, if Dom is R, the correct answer is R and not [4,∞[). If the

problem asks for the solutions of, e.g.,
√
1 + 3

√
x− 4 = 0, the application of this

buggy rule can lead to a wrong solution.
In our experiments, for finding distractors, we often bound W to 1 when the

predicate is called. In this way, we try to focus on more plausible distractors,
resulting from a single error, and discard options that can give clues for looking
somehow more absurd. Depending on the results of the computations, when W

is not 0, the predicate can produce the correct answer as if it were a wrong
answer. The set of all wrong solutions, computed by backtracking, is filtered
out afterwards to discard repetitions and the “solutions” that are equal to the
correct one. In a multiple-choice question about domains, the distractors for the
question are selected from this final list, and possibly the item “None of the

other ones”. With some probability, this item can replace the correct solution
also.

In general, the exact comparison of solutions is not straightforward, and can
be undecidable [2,10]. In the implementation, we defined a canonical form for
some expressions and constants and for the restricted sets manipulated by the
system (which are unions of a finite number of intervals and isolated points),
as in our previous work [17]. Our solver is not complete, as a domain reasoner.
For comparing more complex constants (clearly, not rational numbers), the sys-
tem sometimes performs a numeric comparison, after evaluating the constants
as floating point numbers. In practice, by limiting the number of flaws to 1, we
obtain more plausible distractors that are helpful for identifying a student error
or misconception. In addition, we reduce the risk of finding equivalent solutions

that are not syntactically equal (e.g., 2
√
7 + 4

√
3 and 4+2

√
3), by avoiding many

alternative derivations and unnecessary computations that may yield complex

4 The AGILMAT solver used the CLP(Q) module for supporting computations with
rational numbers. This is the reason for W being not treated as a finite domain
variable, as that avoid some (re-)implementation effort. We plan to fix that in a
future version of the prototype.
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constants. On the other hand, some more powerful procedures available in cur-
rent computer algebra systems (e.g., Mathematica, Maple, Maxima, etc, to name
a few) are too advanced for high-school or undergraduate students. Hence, given
that our system can produce a huge number of exercise instances, the system
can discard the ones it cannot solve exactly. Nevertheless, this is an issue that
requires further research to understand the limits and possible improvements
of our approach although, it is know that, in general, canonical forms cannot
exist [10].

It is worth mentioning that there are other e-learning tools that make use
of buggy rules for creating exercises or for diagnosis [21,22]. SLOPERT, for
instance, is a reasoner and diagnoser for symbolic differentiation, developed in
Prolog, used as a domain reasoner by LeActiveMath and MathBridge [5,21]. It
is enriched with buggy derivation rules, implemented as clause predicates as in
AgilmatQuiz, each one being annotated as buggy (wrong) or expert (correct)
rule. A parameter keeps track of the history of the derivation, but there is not
the same support for imposing constraints on the number of buggy rules that
can be applied in a derivation.

3.3 New Exercises and Strategies for Selecting Distractors

The set of exercises was also enriched and the corresponding solving procedures
were implemented. As we observe above, we try to create exercises that make
some sense. This means that we sometimes can exploit the relationship between
some notions, e.g. range and reciprocal image, to obtain exercises that are ped-
agogically acceptable. For instance, for creating the exercises about the notion
of reciprocal image f−1(D), the system selects D as a subset of the range of f ,
and so it first tries to compute that range.

Poorly written distractors for a multiple-choice question can invalidate the
question. Finding good distractors can be difficult even for teachers. For dis-
tractor development, we tried to attend to the following rules: “use plausible
distractors; avoid illogical distractors; incorporate common errors of students in
distractors; use true statements that do not correctly answer the item” [6]. Since
the choices we consider are either wrong solutions or the correct one, we inter-
pret the last goal as the inclusion of solutions that overlap, when the answer is
a set.

Another guideline is to avoid or use sparingly “None of the above” [6]. How-
ever, the inclusion of this choice in some problems, either as distractor or correct
answer, was a requirement from our colleagues (because the choices are shuffled
by Mooshak, actually we use “None of the other ones” instead). This choice was
intentionally used to make the guess of the correct answer by a simple analy-
sis of the offered answers more difficult. We agree that this can be relevant for
Mathematics. For instance, when the correct answer is a set, students may have
to work out the solution if the other choices cannot be trivially discarded.

To prevent correct answers from being trivially guessed, the system tries to
classify the distractors, for instance in terms of their intersection with the correct
solution or the number of derivations that led to each one. This classification
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is sometimes used to introduce some bias on the selection procedure. In the
implementation, the distractors are selected randomly for each problem, and the
preference for distractors obtained by some rules can increase their weight. For
instance, in problems about the reciprocal image f−1(D), a common error is
the interpretation of f−1 as 1/f . Distractors produced by the buggy rule that
translates this misconception were given some higher weight. The number of
times a distractor occurs is used in this case also.

The criteria for the selection of distractors from the computed list is an issue
that deserves further investigation. In particular, a more accurate model for
defining the preferences for some rules could be designed.

4 Quiz Delivery

In this section, we give further details on how the system is used to produce a
quiz in the mooshakquiz style and how the quiz is delivered to students.

Mooshak Quizzes. Mooshak is a web based competitive learning system originally
developed for managing programming contests [8]. It is used as an e-learning tool
in several universities. Quiz delivery started as a complement for evaluation in
programming courses, giving support for multiple-choice questions. It generates
quizzes by randomly selecting questions and shuffling them and their items.
Quizzes are graded automatically. Each correctly answered question adds its
mark to the final grade. Incorrect answers are penalized so that a series of random
answers to the quiz questions has an expected grade of zero. The system provides
overall statistics per question. Quizzes are structured in groups. The number
of questions in a group may be larger than the number of questions actually
presented to students. A group may be regarded as a question bank. If this bank
is created by AgilmatQuiz from a single template expression, the tests produced
by selecting a single question from each group have similar difficulty level.

Quiz Format. Mooshak and AGILMAT use different formats. Mooshak uses its
own XML based format to import and export data. AGILMAT uses LATEX as
output format. To make the two systems interoperable with each other the main
issue was the definition of a common quiz format. A natural candidate for this
role is the Question & Test Interoperability (QTI) standard. This approach
would require some implementation effort on the AGILMAT side. Moreover,
QTI with MathML would be inappropriate for humans. Teachers must be able
to produce quizzes in the selected format, as certain exercise types needed for
the PreCalculus course are not yet covered by AgilmatQuiz.

The final decision was to create a new LATEX based format for quizzes – the
mooshakquiz style. The quiz is defined as a document structured by LATEX envi-
ronments defining groups, questions and choices. These environments are config-
ured by parameters, such as the number of questions extracted from each group
(typically 1) or the logical values of a choice (true or false). Text in these envi-
ronments may contain math expressions. A quiz in this format may be processed
as a LATEX document to produce an handout in PDF format, for instance.
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On the AgilmatQuiz side, a predicate groups(p(Pred,Args,Nq)−File) de-
fines the groups of exercises to create. Here, Pred is the name of the predicate
that will generate the corresponding group using the expressions already saved
in the file File. The definition looks like the following one.

groups(p(quizReciprocal,3)-p1)

groups(p(quizConjDisj,2,1)-p1).

groups(p(quizDomains,1)-rad1simple).

The sequence Args is optional and defines parameters to this predicate Pred.
Finally, Nq defines the number of questions that will be selected from each group
to a test. The system produces a LATEX file in the mooshakquiz style, that is
used for quiz delivery.

\documentclass{article}

\usepackage[utf8]{inputenc}

\usepackage{mooshakquiz}

\begin{document}

\begin{quizgroup}{3}

\begin{quizquestion} Find $\displaystyle t^{-1}(]1,\infty[)$

for $\displaystyle t :\mathbb{R}\rightarrow\mathbb{R}$

given by $ \displaystyle t(x) = -6\,x-1$ \newline

\begin{quizchoice}{false}$ \displaystyle ]-\infty,-3[ $ \end{quizchoice}

\begin{quizchoice}{true}$ \displaystyle ]-\infty,-\frac{1}{3}[ $

\end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-\infty,-8[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-\infty,0[ $ \end{quizchoice}

\end{quizquestion}

\begin{quizquestion} Find $\displaystyle t^{-1}(]4,\infty[)$

for $\displaystyle t :\mathbb{R}\rightarrow\mathbb{R}$

given by $ \displaystyle t(x) = 2\,(x-4)$ \newline

\begin{quizchoice}{false}$ \displaystyle ]-\infty,6[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-1,\infty[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-4,\infty[ $ \end{quizchoice}

\begin{quizchoice}{true}$ \displaystyle ]6,\infty[ $ \end{quizchoice}

\end{quizquestion}

...

\end{quizgroup}

\begin{quizgroup}{1} ... \end{quizgroup}

\begin{quizgroup}{1} ... \end{quizgroup}

\end{document}

Quiz Processing. Mooshak required minor changes to process quizzes. The func-
tion that imports quizzes in the mooshakquiz style converts the environment
based structure of the document to XML, leaving text and math expressions
unchanged. The document is then imported to the internal representation of
Mooshak and processed as regular quiz, with text and math expressions inserted
in HTML pages and presented on a web browser. Math expressions in LATEX are
converted on-the-fly in the browser using the MathJax [3] JavaScript display
engine, which was crucial for a quick implementation.
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5 Conclusions and Future Work

This work describes an approach for generating and delivering math quizzes
using constraint logic programming. The main contribution is a novel approach
for creating multiple-choice questions with a set of plausible wrong answers. We
focused on a particular type of multiple-choice questions, but our approach could
be exploited to support the generation of other types of questions or populate
question repositories (if the output is written in some more standard exercise
language). The work is an example of an application where the use of declarative
languages was crucial for a rapid development of an useful tool. At the current
stage, the generator and solver consist of about 7000 lines of code. But, it is
not very easy to quantify the overall development effort of AgilmatQuiz, as
it is an extension of AGILMAT. Our crude estimate is of about one month-
person for the reported extension. We plan to improve the implementation and
cover other topics. Constraint programming makes easier the re-usability and
customization of the system. However, it would be interesting to study execution
models where the propagation of constraints plays a more significant role in the
program transformation. The prototype is currently used to support a remedial
PreCalculus course for students entering the Faculty of Sciences at the University
of Porto. A formal evaluation is planned. It would be already possible to draw
some conclusions if we check whether experienced teachers can separate the
exercises produced automatically from identical ones produced manually.
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