Abstract
In this paper, a hybrid clustering and classification algorithm is obtained by exploring the specific statistical model of a hyperplane classifier. We show how the seamless integration of the clustering component allows a substantial cost decrease in the training stage, without impairing the performance of the classifier. The algorithm is also robust to outliers and deals with training errors in a natural and efficient manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vapnik, V.N., Boser, B.E., Guyon, I.: A training algorithm for optimal margin classifiers. In: COLT 1992 Proceedings of the Fifth Annual Workshop on Computational Learning, Pittsburgh, PA, USA, vol. 5, pp. 144–152. ACM, New York (1992)
Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)
Vapnik, V.N.: Statistical learning theory. John Wiley and Sons Inc. (1998)
Chapelle, O., Vapnik, V.N.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2012–2036 (2000)
Chapelle, O., Vapnik, V.N.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2001)
Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research 6, 1889–1918 (2005)
Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3) (2011)
Yu, H., Yang, J., Han, J.: Classifying large data sets using svms with hierarchical clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, pp. 306–315. ACM, New York (2003)
Ligges, U., Krey, S.: Feature clustering for instrument classification. Computational Statistics 23, 279–291 (2011)
Awad, M., Khan, L., Bastani, F., Yen, I.-L.: An effective support vector machines (svm) performance using hierarchical clustering. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, pp. 663–667. IEEE Computer Society, Washington (2004)
Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin classification: A scalable approach using socp formulation. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, pp. 374–379. ACM, New York (2006)
Sucilă, A.: A Distributed Statistical Binary Classifier. Probabilistic Vector Machine. Ph.D. Thesis, Alexandru Ioan Cuza University, Faculty of Computer Science (2012)
Cervantes, J., Li, X., Yu, W.: Support vector machine classification based on fuzzy clustering for large data sets. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 572–582. Springer, Heidelberg (2006)
Cervantes, J., Li, X., Yu, W., Li, K.: Support vector machine classification for large data sets via minimum enclosing ball clustering. Neurocomputing 71(4-6), 611–619 (2008)
Nath, J.S., Bhattacharyya, C., Murty, M.N.: Clustering based large margin classification: a scalable approach using socp formulation. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 674–679. ACM, New York (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cimpoeşu, M., Sucilă, A., Luchian, H. (2013). Probabilistic Vector Machine: Scalability through Clustering Hybridization. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-40669-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40668-3
Online ISBN: 978-3-642-40669-0
eBook Packages: Computer ScienceComputer Science (R0)