Skip to main content

Online SLAM Based on a Fast Scan-Matching Algorithm

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

  • 3174 Accesses

Abstract

This paper presents a scan-matching approach for online simultaneous localization and mapping. This approach combines a fast and efficient scan-matching algorithm for localization with dynamic and approximate likelihood fields to incrementally build a map. The achievable results of the approach are evaluated using an objective benchmark designed to compare SLAM solutions that use different methods. The result is a fast online SLAM approach suitable for real-time operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2743–2748 (2003)

    Google Scholar 

  2. Censi, A.: An ICP variant using a point-to-line metric. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 19–25. IEEE (2008)

    Google Scholar 

  3. Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A.: Real-time and robust monocular slam using predictive multi-resolution descriptors. In: Bebis, G., et al. (eds.) ISVC 2006, Part II. LNCS, vol. 4292, pp. 276–285. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11919629_29

    Chapter  Google Scholar 

  4. Cunha, J., Pedrosa, E., Cruz, C., Neves, A.J., Lau, N.: Using a depth camera for indoor robot localization and navigation. In: RGB-D: Advanced Reasoning with Depth Cameras - RSS Workshop (2011), http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011

  5. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322–1328 (1999)

    Google Scholar 

  6. Elfes, A.: Occupancy grids: a probabilistic framework for robot perception and navigation. Ph.D. thesis, Carnegie Mellon University (1989)

    Google Scholar 

  7. Felzenszwalb, P., Huttenlocher, D.: Distance Transforms of Sampled Functions. Tech. rep., Cornell University (2004)

    Google Scholar 

  8. Gouveia, M., Moreira, A.P., Costa, P., Reis, L.P., Ferreira, M.: Robustness and precision analysis in map-matching based mobile robot self-localization. In: New Trends in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, pp. 243–253 (2009)

    Google Scholar 

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)

    Article  Google Scholar 

  10. Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proc. of Robotics: Science and Systems, RSS (2007)

    Google Scholar 

  11. Holz, D., Behnke, S.: Sancta simplicitas - on the efficiency and achievable results of SLAM using ICP-based incremental registration. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1380–1387 (2010)

    Google Scholar 

  12. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160. IEEE (2011)

    Google Scholar 

  13. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleine, A.: SLAM benchmarking (2009), http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php

  14. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Autonomous Robots 27(4), 387–407 (2009)

    Article  Google Scholar 

  15. Lau, B., Sprunk, C., Burgard, W.: Improved updating of Euclidean distance maps and Voronoi diagrams. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 281–286 (2010)

    Google Scholar 

  16. Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: An efficient and accurate approach for robot self-localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 142–153. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Leonard, J.J., Feder, H.J.S.: A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization. In: International Symposium of Robotics Research (2000)

    Google Scholar 

  18. Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. Journal of Intelligent and Robotic Systems 18(3), 249–275 (1997)

    Article  Google Scholar 

  19. Merke, A., Welker, S., Riedmiller, M.: Line Based Robot Localization under Natural Light Conditions. In: ECAI 2004 Workshop on Agents in Dynamic and Real Time Environments (2004)

    Google Scholar 

  20. Moravec, H.P.: Sensor Fusion in Certainty Grids for Mobile Robots. AI Magazine 9(2), 61 (1988)

    Google Scholar 

  21. Olson, E., Leonard, J., Teller, S.: Fast iterative alignment of pose graphs with poor initial estimates. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2262–2269. IEEE (2006)

    Google Scholar 

  22. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE International Conference on Neural Networks, vol. 1, pp. 586–591 (1993)

    Google Scholar 

  23. Thrun, S.: A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots. The International Journal of Robotics Research 20(5), 335–363 (2001)

    Article  Google Scholar 

  24. Thrun, S.: Probabilistic Algorithms in Robotics. AI Magazine 21(4), 93 (2000)

    Google Scholar 

  25. Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Durrant-Whyte, H.: Simultaneous Localization and Mapping with Sparse Extended Information Filters. The International Journal of Robotics Research 23(7-8), 693–716 (2004)

    Article  Google Scholar 

  26. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pedrosa, E., Lau, N., Pereira, A. (2013). Online SLAM Based on a Fast Scan-Matching Algorithm. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics