Abstract
This paper presents a scan-matching approach for online simultaneous localization and mapping. This approach combines a fast and efficient scan-matching algorithm for localization with dynamic and approximate likelihood fields to incrementally build a map. The achievable results of the approach are evaluated using an objective benchmark designed to compare SLAM solutions that use different methods. The result is a fast online SLAM approach suitable for real-time operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2743–2748 (2003)
Censi, A.: An ICP variant using a point-to-line metric. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 19–25. IEEE (2008)
Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A.: Real-time and robust monocular slam using predictive multi-resolution descriptors. In: Bebis, G., et al. (eds.) ISVC 2006, Part II. LNCS, vol. 4292, pp. 276–285. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11919629_29
Cunha, J., Pedrosa, E., Cruz, C., Neves, A.J., Lau, N.: Using a depth camera for indoor robot localization and navigation. In: RGB-D: Advanced Reasoning with Depth Cameras - RSS Workshop (2011), http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011
Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322–1328 (1999)
Elfes, A.: Occupancy grids: a probabilistic framework for robot perception and navigation. Ph.D. thesis, Carnegie Mellon University (1989)
Felzenszwalb, P., Huttenlocher, D.: Distance Transforms of Sampled Functions. Tech. rep., Cornell University (2004)
Gouveia, M., Moreira, A.P., Costa, P., Reis, L.P., Ferreira, M.: Robustness and precision analysis in map-matching based mobile robot self-localization. In: New Trends in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, pp. 243–253 (2009)
Grisetti, G., Stachniss, C., Burgard, W.: Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)
Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proc. of Robotics: Science and Systems, RSS (2007)
Holz, D., Behnke, S.: Sancta simplicitas - on the efficiency and achievable results of SLAM using ICP-based incremental registration. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1380–1387 (2010)
Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160. IEEE (2011)
Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleine, A.: SLAM benchmarking (2009), http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php
Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Autonomous Robots 27(4), 387–407 (2009)
Lau, B., Sprunk, C., Burgard, W.: Improved updating of Euclidean distance maps and Voronoi diagrams. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 281–286 (2010)
Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: An efficient and accurate approach for robot self-localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 142–153. Springer, Heidelberg (2006)
Leonard, J.J., Feder, H.J.S.: A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization. In: International Symposium of Robotics Research (2000)
Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. Journal of Intelligent and Robotic Systems 18(3), 249–275 (1997)
Merke, A., Welker, S., Riedmiller, M.: Line Based Robot Localization under Natural Light Conditions. In: ECAI 2004 Workshop on Agents in Dynamic and Real Time Environments (2004)
Moravec, H.P.: Sensor Fusion in Certainty Grids for Mobile Robots. AI Magazine 9(2), 61 (1988)
Olson, E., Leonard, J., Teller, S.: Fast iterative alignment of pose graphs with poor initial estimates. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2262–2269. IEEE (2006)
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE International Conference on Neural Networks, vol. 1, pp. 586–591 (1993)
Thrun, S.: A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots. The International Journal of Robotics Research 20(5), 335–363 (2001)
Thrun, S.: Probabilistic Algorithms in Robotics. AI Magazine 21(4), 93 (2000)
Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Durrant-Whyte, H.: Simultaneous Localization and Mapping with Sparse Extended Information Filters. The International Journal of Robotics Research 23(7-8), 693–716 (2004)
Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pedrosa, E., Lau, N., Pereira, A. (2013). Online SLAM Based on a Fast Scan-Matching Algorithm. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-40669-0_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40668-3
Online ISBN: 978-3-642-40669-0
eBook Packages: Computer ScienceComputer Science (R0)