Skip to main content

Path Planning and Navigation Framework for a Planetary Exploration Rover Using a Laser Range Finder

  • Chapter
  • First Online:
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 92))

Abstract

This chapter presents a path planning and navigation framework for a planetary exploration rover and its experimental tests at a Lunar/Martian analog site. The framework developed in this work employs a laser range finder (LRF) for terrain feature mapping. The path planning algorithm generates a feasible path based on a cost function consisting of terrain inclination, terrain roughness, and path length. A set of navigation commands for the rover is then computed from the generated path. The rover executes those navigation commands to reach a desired goal. In this paper, a terrain mapping technique that uses a LRF is described along with an introduction to a cylindrical coordinate digital elevation map (\(\text {C}^2\)DEM). The gird-based path planning algorithm is also presented. Field experiments regarding the path planning and navigation that evaluate the feasibility of the framework developed in this work are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Matthies, M. Maimone, A. Johnson et al., Computer vision on mars. Int. J. Comput. Vision 75(1), 67–92 (2007)

    Article  Google Scholar 

  2. S. Golberg, M. Maimone, L. Matthies, Stereo vision and rover navigation software for planetary exploration. in Proceedings of the IEEE Aerospace Conference, vol 5 (Big Sky, Montana, 2002)

    Google Scholar 

  3. M. Maimone, A. Johnson, Y. Cheng, Autonomous navigation results from the mars exploration rover (MER) mission. in 9th International Symposium on Experimental Robotics (Singapore, 2004)

    Google Scholar 

  4. O. Wulf, B. Wagner, Fast 3D scanning methods for laser measurement systems. in Proceedings of the International Conference on Control Systems and Computer Science (Bucharest, Romania, 2003), pp. 312–317

    Google Scholar 

  5. S. Thrun, S. Thayer, W. Whittaker et al., Autonomous exploration and mapping of abandoned mines. Robot. Autom. Mag. IEEE 11(4), 79–91 (2004)

    Article  Google Scholar 

  6. K. Nagatani, T. Matsuzawa, K. Yoshida, Scan-point planning and 3-D map building for a 3-D laser range scanner in an outdoor environment. in Proceedings of the 7th International Conference on Field and Service Robots (Cambridge, Massachusetts, 2009)

    Google Scholar 

  7. M. Buehler, K. Iagnemma, S. Singh (eds.), in The 2005 DARPA Grand Challenge: The Great Robot Race. Springer Tracts in Advanced Robotics (STAR) Series, vol 36 (Springer, Heidelberg, 2005)

    Google Scholar 

  8. M. Buehler, K. Iagnemma, S. Singh (eds.), The DARPA Urban Challenge: Autonomous Vehicles in City Traffic. Springer Tracts in Advanced Robotics (STAR) Series, vol 56 (Springer, Heidelberg, 2009)

    Google Scholar 

  9. UTM-30LX, Okuyo Automatic CO., LTD. http://www.hokuyo-aut.jp/

  10. L. Longega, S. Panzieri, F. Pascucci, G. Ulivi, Indoor robot navigation using log-polar local maps. in Prep. of 7th International IFAC Symposium on Robot, Control, pp. 229–234 (2003)

    Google Scholar 

  11. M. Nieuwenhuisen, R. Steffens, S. Behnke, Local multiresolution path planning in soccer games based on projected intentions. in Proceedings of the 15th RoboCup International Symposium, Istanbul (2011)

    Google Scholar 

  12. R. Hadsell, M. Scoffier, U. Muller, Y. LeCun, Mapping and planning under uncertainty in mobile robots with long-range perception. in Proceedings of the, IEEE/RSJ Int Conference on Intelligent Robots and Systems, (Nice, France, 2008), pp. 2525–2530

    Google Scholar 

  13. A. Stentz, Optimal and efficient path planning for partially-known environments. in Proceedings of the, IEEE International Conference on Robotics and Automation, (San Diego, CA, 1994), pp. 3310–3317

    Google Scholar 

  14. J. Barraquand, B. Langlois, J. Latombe, Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  MathSciNet  Google Scholar 

  15. L. Kavraki, P. Svestka, J. Latombe et al., Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  16. P. Cheng, Z. Shen, S. LaValle, RRT-based trajectory design for autonomous automobiles and spacecraft. Arch. Control Sci. 11(3–4), 167–194 (2001)

    MATH  MathSciNet  Google Scholar 

  17. K. Iagnemma, S. Dubowsky, Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer Tracts in Advanced Robotics (Springer, Berlin, 2004)

    Google Scholar 

  18. M. Otsuki, G. Ishigami, T. Shimada et al., Experimental study on mobility and navigation for exploration rover in natural rough terrain. in Proceedings of the 28th International Symposium on Space Technology and Science, (Okinawa, 2011), d-87 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genya Ishigami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishigami, G., Otsuki, M., Kubota, T. (2014). Path Planning and Navigation Framework for a Planetary Exploration Rover Using a Laser Range Finder. In: Yoshida, K., Tadokoro, S. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40686-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40686-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40685-0

  • Online ISBN: 978-3-642-40686-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics