Skip to main content

A Lattice-Theoretic Framework for Metabolic Pathway Analysis

  • Conference paper
Computational Methods in Systems Biology (CMSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Included in the following conference series:

Abstract

Constraint-based analysis of metabolic networks has become a widely used approach in computational systems biology. In the simplest form, a metabolic network is represented by a stoichiometric matrix and thermodynamic information on the irreversibility of certain reactions. Then one studies the set of all steady-state flux vectors satisfying these stoichiometric and thermodynamic constraints.

We introduce a new lattice-theoretic framework for the computational analysis of metabolic networks, which focuses on the support of the flux vectors, i.e., we consider only the qualitative information whether or not a certain reaction is active, but not its specific flux rate. Our lattice-theoretic view includes classical metabolic pathway analysis as a special case, but turns out to be much more flexible and general, with a wide range of possible applications.

We show how important concepts from metabolic pathway analysis, such as blocked reactions, flux coupling, or elementary modes, can be generalized to arbitrary lattice-based models. We develop corresponding general algorithms and present a number of computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson, B.O.: Comparison of network-based pathway analysis methods. Trends in Biotechnology 22(8), 400–405 (2004)

    Article  Google Scholar 

  2. Terzer, M., Maynard, N.D., Covert, M.W., Stelling, J.: Genome-scale metabolic networks. Wiley Interdiscip. Rev. Syst. Biol. Med. 1(3), 285–297 (2009)

    Article  Google Scholar 

  3. Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., Kang, J., Hyduke, D.R., Palsson, B.O.: Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nature Protocols 6(9), 1290–1307 (2011)

    Article  Google Scholar 

  4. Lewis, N.E., Nagarajan, H., Palsson, B.: Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10(4), 291–305 (2012)

    Google Scholar 

  5. Varma, A., Palsson, B.: Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Nature Biotechnology 12(10), 994–998 (1994)

    Article  Google Scholar 

  6. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nature Biotechnology 28(3), 245–248 (2010)

    Article  Google Scholar 

  7. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2(2), 165–182 (1994)

    Article  Google Scholar 

  8. Schuster, S., Hilgetag, C., Woods, J.H., Fell, D.A.: Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45, 153–181 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Figueiredo, L.F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J.E., Schuster, S., Planes, F.J.: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25(23), 3158–3165 (2009)

    Article  Google Scholar 

  10. Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions. Genome Research 14(2), 301–312 (2004)

    Article  Google Scholar 

  11. David, L., Marashi, S.A., Larhlimi, A., Mieth, B., Bockmayr, A.: FFCA: a feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinformatics 12(1), 236 (2011)

    Article  Google Scholar 

  12. Jensen, P., Lutz, K., Papin, J.: TIGER: toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks. BMC Syst. Biol. 5, 147 (2013)

    Article  Google Scholar 

  13. Covert, M.W., Schilling, C.H., Palsson, B.: Regulation of Gene Expression in Flux Balance Models of Metabolism. J. Theoretical Biology 213(1), 73–88 (2001)

    Article  Google Scholar 

  14. Shlomi, T., Eisenberg, Y., Sharan, R., Ruppin, E.: A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Molecular Systems Biology 3, 101 (2007)

    Article  Google Scholar 

  15. Jungreuthmayer, C., Ruckerbauer, D.E., Zanghellini, J.: regEfmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic. BioSystems 113(1), 37–39 (2013)

    Article  Google Scholar 

  16. Beard, D.A., Babson, E., Curtis, E., Qian, H.: Thermodynamic constraints for biochemical networks. Journal of Theoretical Biology 228, 327–333 (2004)

    Article  MathSciNet  Google Scholar 

  17. Müller, A.C., Bockmayr, A.: Fast thermodynamically constrained flux variability analysis. Bioinformatics 29(7), 903–909 (2013)

    Article  Google Scholar 

  18. Kelk, S.M., Olivier, B.G., Stougie, L., Bruggeman, F.J.: Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Scientific Reports 2, 580 (2012)

    Article  Google Scholar 

  19. Carbonell, P., Fichera, D., Pandit, S.B., Faulon, J.L.: Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms. BMC Systems Biology 6(1), 10 (2012)

    Article  Google Scholar 

  20. Birkhoff, G.: Lattices and their applications. Bulletin of the American Mathematical Society 44(12), 793–801 (1938)

    Article  MathSciNet  Google Scholar 

  21. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press (1990)

    Google Scholar 

  22. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Fourth Annual ACM Symposium on Principles of Programming Languages, Los Angeles, pp. 238–252. ACM Press (1977)

    Google Scholar 

  23. Oles, F.J.: An application of lattice theory to knowledge representation. Theoretical Computer Science 249(1), 163–196 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garg, V., Mittal, N., Sen, A.: Applications of lattice theory to distributed computing. ACM SIGACT Notes (2003)

    Google Scholar 

  25. John, M., Nebut, M., Niehren, J.: Knockout Prediction for Reaction Networks with Partial Kinetic Information. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 355–374. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Nuño, J.C., Sánchez-Valdenebro, I., Pérez-Iratxeta, C., Meléndez-Hevia, E., Montero, F.: Network organization of cell metabolism: monosaccharide interconversion. The Biochemical Journal 324, 103–111 (1997)

    Google Scholar 

  27. Kaleta, C., de Figueiredo, L.F., Schuster, S.: Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Research 19(10), 1872–1883 (2009)

    Article  Google Scholar 

  28. Nation, J.B.: Revised Notes on Lattice Theory (2012), http://www.math.hawaii.edu/~jb/

  29. Larhlimi, A., David, L., Selbig, J., Bockmayr, A.: F2C2: a fast tool for the computation of flux coupling in genome-scale metabolic networks. BMC Bioinformatics 13(75), 57 (2012)

    Article  Google Scholar 

  30. Notebaart, R.A., Teusink, B., Siezen, R.J., Papp, B.: Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput. Biol. 4, e26 (2008)

    Article  Google Scholar 

  31. Notebaart, R.A., Kensche, P.R., Huynen, M.A., Dutilh, B.E.: Asymmetric relationships between proteins shape genome evolution. Genome Biol. 10, R19 (2009)

    Article  Google Scholar 

  32. Pál, C., Papp, B., Lercher, M.J.: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005)

    Article  Google Scholar 

  33. Yizhak, K., Tuller, T., Papp, B., Ruppin, E.: Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol. Syst. Biol. 7, 479 (2011)

    Google Scholar 

  34. Montagud, A., Zelezniak, A., Navarro, E., de Córdoba, P.F., Urchueguía, J.F., Patil, K.R.: Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol. J. 6, 330–342 (2011)

    Article  Google Scholar 

  35. Szappanos, B., Kovács, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A., Gelius-Dietrich, G., Lercher, M., Jelasity, M., Myers, C., Andrews, B., Boone, C., Oliver, S., Pál, C., Papp, B.: An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43(7), 656–662 (2011)

    Article  Google Scholar 

  36. Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J., Montero, F., Schuster, S.: METATOOL: for studying metabolic networks. Bioinformatics 15(3), 251–257 (1999)

    Article  Google Scholar 

  37. Gurobi Optimization Inc: Gurobi 5.1 (2012)

    Google Scholar 

  38. Schellenberger, J., Park, J.O., Conrad, T.M., Palsson, B.O.: BiGG: A Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11(213), 213 (2010)

    Article  Google Scholar 

  39. Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Molecular Systems Biology 7(535) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldstein, Y.A.B., Bockmayr, A. (2013). A Lattice-Theoretic Framework for Metabolic Pathway Analysis. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics