Skip to main content

Sparseness Controls the Receptive Field Characteristics of V4 Neurons: Generation of Curvature Selectivity in V4

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

Physiological studies have reported that the intermediate-level visual area represents primitive shape by the selectivity to curvature and its direction. However, it has not been revealed that what coding scheme underlies the construction of the selectivity with complex characteristics. We propose that sparse representation is crucial for the construction so that a sole control of sparseness is capable of generating physiological characteristics. To test the proposal, we applied component analysis with sparseness constraint to activities of model neurons, and investigated whether the computed bases reproduce the characteristics of the selectivity. To evaluate the learned bases quantitatively, we computed the tuning properties of single bases and the population, as similar to the physiological reports. The basis functions reproduced the physiological characteristics when sparseness was medium (0.6-0.8). These results indicate that sparse representation is crucial for the curvature selectivity, and that a sole control of sparseness is capable of constructing the representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Google Scholar 

  2. Ito, M., Komatsu, H.: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J. Neuroscience 24(13), 3313–3324 (2004)

    Article  Google Scholar 

  3. Carlson, E.T., Rasquinha, R.J., Zhang, K., Connor, C.E.: A sparse object coding scheme in area V4. Curr. Biol. 21, 288–293 (2011)

    Article  Google Scholar 

  4. Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., Connor, C.E.: A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat. Neurosci. 11(11), 1352–1360 (2008)

    Article  Google Scholar 

  5. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  6. Felleman, D.J., Van Essen, D.C.: Distributed Hierarchical Processing in the Primate Cerebral Cortex, Cereb. Cortex 1, 1–47 (1991)

    Google Scholar 

  7. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: Amsterdam Library of Objects Images. Int. J. Comp. Vis. 61(1), 103–112 (2005)

    Article  Google Scholar 

  8. Vinje, W.E., Gallant, J.L.: Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. Science 287, 1273–1276 (2000)

    Article  Google Scholar 

  9. Rust, N.C., DiCarlo, J.J.: Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream. J. Neurosci. 32(30), 10170–10182 (2012)

    Article  Google Scholar 

  10. DeWeese, M.R., Wehr, M., Zador, A.M.: Binary spiking in auditory cortex. J. Neurosci. 23(21), 7940–7949 (2003)

    Google Scholar 

  11. Jortner, R.A., Farivar, S.S., Laurent, G.: A simple connectivity scheme for sparse coding in olfactory system. J. Neurosci. 27(7), 1659–1669 (2007)

    Article  Google Scholar 

  12. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neuron in the human brain. Nature 435, 1102–1107 (2005)

    Article  Google Scholar 

  13. Asai, Y., Villa, A.E.P.: Integration and transmission of distributed deterministic neural activity in feed-forward networks. Brain Res. 1434, 17–33 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hatori, Y., Mashita, T., Sakai, K. (2013). Sparseness Controls the Receptive Field Characteristics of V4 Neurons: Generation of Curvature Selectivity in V4. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics