Skip to main content

Training Computationally Efficient Smartphone–Based Human Activity Recognition Models

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

The exploitation of smartphones for Human Activity Recognition (HAR) has been an active research area in which the development of fast and efficient Machine Learning approaches is crucial for preserving battery life and reducing computational requirements. In this work, we present a HAR system which incorporates smartphone-embedded inertial sensors and uses Support Vector Machines (SVM) for the classification of Activities of Daily Living (ADL). By exploiting a publicly available benchmark HAR dataset, we show the benefits of adding smartphones gyroscope signals into the recognition system against the traditional accelerometer-based approach, and explore two feature selection mechanisms for allowing a radically faster recognition: the utilization of exclusively time domain features and the adaptation of the L1 SVM model which performs comparably to non-linear approaches while neglecting a large number of non-informative features.

This work was supported in part by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments, which is funded by the EACEA Agency of the European Commission under EMJD ICE FPA n 2010-0012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiological Measurement 27(10), 901–935 (2006)

    Article  Google Scholar 

  2. Altun, K., Barshan, B.: Human activity recognition using inertial/Magnetic sensor units. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 38–51. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2013)

    Google Scholar 

  4. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  7. Ghio, A., Anguita, D., Oneto, L., Ridella, S., Schatten, C.: Nested sequential minimal optimization for support vector machines. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 156–163. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine 10(1), 156–167 (2006)

    Article  Google Scholar 

  9. Khan, A.M., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: IEEE International Conference on Future Information Technology (2010)

    Google Scholar 

  10. Khan, N.M., Ksantini, R., Ahmad, I.S., Guan, L.: A sparse support vector machine classifier with nonparametric discriminants. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 330–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Communications Magazine 48(9), 140–150 (2010)

    Article  Google Scholar 

  12. Lara, O., Labrador, M.: A survey on human activity recognition using wearable sensors. IEEE Communications Surveys Tutorials 1(99), 1–18 (2012)

    Google Scholar 

  13. Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Computing 1(3), 24–32 (2002)

    Article  Google Scholar 

  14. Lovell, N., Wang, N., Ambikairajah, E., Celler, B.G.: Accelerometry based classification of walking patterns using time-frequency analysis. In: IEEE Annual International Conference of the Engineering in Medicine and Biology Society (2007)

    Google Scholar 

  15. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  16. Narayanan, M.R., Scalzi, M.E., Redmond, S.J., Lord, S.R., Celler, B.G., Lovell, N.H.: A wearable triaxial accelerometry system for longitudinal assessment of falls risk. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2008)

    Google Scholar 

  17. Nishkam, R., Nikhil, D., Preetham, M., Littman, M.L.: Activity recognition from accelerometer data. In: Conference on Innovative Applications of Artificial Intelligence (2005)

    Google Scholar 

  18. Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering 56(3), 871–879 (2009)

    Article  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press (2007)

    Google Scholar 

  20. Ramírez, F., Allende, H.: Dual support vector domain description for imbalanced classification. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 710–717. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Reyes-Ortiz, J.L., Ghio, A., Anguita, D., Parra, X., Cabestany, J., Catal, A.: Human activity and motion disorder recognition: Towards smarter interactive cognitive environments. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2013)

    Google Scholar 

  22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. The Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Roggen, D., Förster, K., Calatroni, A., Holleczek, T., Fang, Y., Tröster, G., Lukowicz, P., Pirkl, G., Bannach, D., Kunze, K., Ferscha, A., Holzmann, C., Riener, A., Chavarriaga, R., del, R., Millán, J.: Opportunity: Towards opportunistic activity and context recognition systems. In: Proc. 3rd IEEE WoWMoM Workshop on Autononomic and Opportunistic Communications (2009)

    Google Scholar 

  24. Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2013)

    Google Scholar 

  25. Ryder, J., Longstaff, B., Reddy, S., Estrin, D.: Ambulation: A tool for monitoring mobility patterns over time using mobile phones. In: IEEE International Conference on Computational Science and Engineering (2009)

    Google Scholar 

  26. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press (2001)

    Google Scholar 

  27. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288 (1996)

    Google Scholar 

  28. Vapnik, V.: Statistical learning theory. Wiley-Interscience (1998)

    Google Scholar 

  29. Wu, W., Dasgupta, S., Ramirez, E.E., Peterson, C., Norman, G.J.: Classification accuracies of physical activities using smartphone motion sensors. Journal of Medical Internet Research 14(5), 105–130 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L. (2013). Training Computationally Efficient Smartphone–Based Human Activity Recognition Models. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics