Abstract
Complex and hazardous driving situations often arise with the delayed perception of traffic objects. To automatically detect whether such objects have been perceived by the driver, there is a need for techniques that can reliably recognize whether the driver’s eyes have fixated or are pursuing the hazardous object (i.e., detecting fixations, saccades, and smooth pursuits from raw eye tracking data). This paper presents a system for analyzing the driver’s visual behavior based on an adaptive online algorithm for detecting and distinguishing between fixation clusters, saccades, and smooth pursuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, C., Winkels, M., Lischke, A., Höppner, J.: GazeAlyze: a MATLAB toolbox for the analysis of eye movement data. Behavior Research Methods 44(2), 404–419 (2012)
Camilli, M., Nacchia, R., Terenzi, M., Di Nocera, F.: Astef: A simple tool for examining fixations. Behavior Research Methods 40, 373–382 (2008)
Duchowski, A.: Eye tracking methodology: Theory and practice. Springer, London (2007)
Gitelman, D.R.: Ilab: a program for postexperimental eye movement analysis. Behavioral Research Methods, Instruments and Computers 34(4), 605–612 (2002)
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
Komogortsev, O.V., Karpov, A.: Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods 45, 203–215 (2013)
Komogortsev, O.V., Gobert, D.V., Jayarathna, S., Koh, D., Gowda, S.: Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Transactions on Biomedical Engineering 57, 2635–2645 (2010)
Leigh, R.J., Zee, D.S.: The neurology of eye movements. Oxford University Press (2006)
Munn, S.M., Stefano, L., Pelz, J.B.: Fixation-identification in dynamic scenes: comparing an automated algorithm to manual coding. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, APGV 2008, pp. 33–42. ACM, New York (2008)
Nagayama, Y.: Role of visual perception in driving. IATSS Research 2, 64–73 (1978)
Noton, D., Stark, L.W.: Eye movements and visual perception. Scientific American 224(6), 34–43 (1971)
Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–982 (2000)
Privitera, C.M., Stark, L.W.: Scanpath theory, attention, and image processing algorithms for predicting human eye fixations. In: Itti, L., Rees, G., Tsotsos, J. (eds.) Neurobiology of Attention, pp. 269–299 (2005)
Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the Eye Tracking Research and Applications, pp. 71–78 (2000)
Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: Proceedings of the 2004 Symposium on Eye Tracking Research & Applications, pp. 27–34 (2004)
Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering of eye movement data. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 285–288. ACM, New York (2012)
Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)
Velichkovsky, B.M., Rothert, A., Kopf, M., Dornhöfer, S.M., Joos, M.: Towards an express-diagnostics for level of processing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 145–156 (2002)
Vidal, M., Bulling, A., Gellersen, H.: Detection of smooth pursuits using eye movement shape features. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 177–180. ACM, New York (2012)
Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: Proceedings of the Eye Tracking Research and Applications, pp. 31–36 (2002)
Zeeb, E.: Daimler’s new full-scale, high-dynamic driving simulator-a technical overview. Actes INRETS, 157–165 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tafaj, E., Kübler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M. (2013). Online Classification of Eye Tracking Data for Automated Analysis of Traffic Hazard Perception. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-40728-4_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40727-7
Online ISBN: 978-3-642-40728-4
eBook Packages: Computer ScienceComputer Science (R0)