Skip to main content

Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

This paper presents an alternative approach for the control and balancing operations of a simulated inverted pendulum. The proposed method uses a neuronal network called NeuraBase to learn the sensor events obtained via a simulated rotary encoder and a simulated stepper motor, which rotates the swinging arm. A neuron layer called the controller network will link the sensor neuron events to the motor neurons. The proposed NeuraBase network model (NNM) has demonstrated its ability to successfully control the balancing operation of the pendulum, in the absence of a dynamic model and theoretical control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mertl, J., Sobota, J., Schlegel, M., Badal, P.: Swing-up and Stabilization of Rotary Inverted Pendulum. In: Proceedings of Process Control, pp. 1–6. Slovak University of Technology (2005)

    Google Scholar 

  2. Sukontanakarn, V., Parnichkun, M.: Real-time Optimal Control for Rotary Inverted Pendulum. American Journal of Applied Sciences 6(6), 1106–1115 (2009)

    Article  Google Scholar 

  3. Astrom, K.J., Furuta, K.: Swinging up a Pendulum by Energy Control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  Google Scholar 

  4. Nasir, A.N.K., Ahmad, M.A., Rahmat, M.F.: Performance Comparison between LQR and PID Controller for an Inverted Pendulum System. In: Proceedings of International Conference on Power Control and Optimization (2008)

    Google Scholar 

  5. Radhamohan, S.V., Subramaniam, M., Nigam, M.J.: Fuzzy Swing-up and Stabilization of Real Inverted Pendulum using Single Rulebase. Journal of Theoretical and Applied Information Technology, 43–50 (2005)

    Google Scholar 

  6. Minnaert, E., Hemmelman, B., Dolan, D.: Inverted Pendulum Design with Hardware Fuzzy Logic Controller. Journal of Systemics, Cybernetics and Informatics 6(3), 34–39 (2008)

    Google Scholar 

  7. Hayashi, I., Nomura, H., Wakami, N.: Acquisition of inference rules by neural network driven fuzzy reasoning. Japanese Journal of Fuzzy Theory and Systems 2(4), 453–469 (1990)

    MathSciNet  Google Scholar 

  8. Zheng, Y., Luo, S., Lv, Z.: Control Double Inverted Pendulum by Reinforcement Learning with Double CMAC Network. In: Proceedings of The 18th International Conference on Pattern Recognition, vol. 4, pp. 639–642 (2006)

    Google Scholar 

  9. John, D.H., Fischer, J., Johnam, D.: A Neural Network Pole Balancer that Learns and Operates on a Real Robot in Real Time. In: Proceedings of the MLC-COLT Workshop on Robot Learning, pp. 73–80 (1994)

    Google Scholar 

  10. Tatikonda, R.C., Battula, V.P., Kumar, V.: Control of Inverted Pendulum using Adaptive Neuro Fuzzy Inference Structure. In: IEEE Internal Symposium on Circuits and Systems, pp. 1348–1351 (2010)

    Google Scholar 

  11. Tetsuya, M., Furukawa, T.: The Self-Organizing Adaptive Controller. International Journal of Innovative Computing, Information and Control 7(4), 1933–1947 (2011)

    Google Scholar 

  12. Lin, C.J., Lee, C.Y.: Non-linear System Control using a Recurrent Fuzzy Neural Network based on Improved Particle Swarm Optimisation. International Journal of Systems Science 41(4), 381–395 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hercus, R.G.: Neural networks with learning and expression capability. U. S. Patent 7412426 B2 (2008)

    Google Scholar 

  14. NeuraBase Generic Toolbox, http://neuramatix.com/

  15. Cazzolato, B.S., Prime, Z.: On the Dynamics of the Furuta Pendulum. Journal of Control Science and Engineering (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hercus, R., Wong, KY., Ho, KF. (2013). Balancing of a Simulated Inverted Pendulum Using the NeuraBase Network Model. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics