Skip to main content

Correlated Trends: A New Representation for Imperfect and Large Dataseries

  • Conference paper
Flexible Query Answering Systems (FQAS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8132))

Included in the following conference series:

  • 1376 Accesses

Abstract

The computational representation of dataseries is a task of growing interest in our days. However, as these data are often imperfect, new representation models are required to effectively handle them. This work presents Frequent Correlated Trends, our proposal for representing uncertain and imprecise multivariate dataseries. Such a model can be applied to any domain where dataseries contain patterns that recur in similar —but not identical— shape. We describe here the model representation and an associated learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kriegler, E., Held, H.: Utilizing belief functions for the estimation of future climate change. Int. Journal of Approximate Reasoning 39(2-3), 185–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Molina-Solana, M., Arcos, J.L., Gómez, E.: Identifying Violin Performers by their Expressive Trends. Intelligent Data Analysis 14(5), 555–571 (2010)

    Google Scholar 

  3. Delgado, M., Ros, M., Vila, M.A.: Correct behavior identification system in a Tagged World. Expert Systems with Applications 36(6), 9899–9906 (2009)

    Article  Google Scholar 

  4. Zhang, Y.Q., Wan, X.: Statistical fuzzy interval neural networks for currency exchange rate time series prediction. Applied Soft Computing 7(4), 1149–1156 (2007)

    Article  Google Scholar 

  5. Motro, A.: Sources of Uncertainty, Imprecision, and Inconsistency in Information Systems. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 9–34. Kluwer Academic Publishers (1996)

    Google Scholar 

  6. Liao, S.S., Tang, T.H., Liu, W.Y.: Finding relevant sequences in time series containing crisp, interval, and fuzzy interval data. IEEE Transactions on Systems, Man, and Cybernetics 34(5), 2071–2079 (2004)

    Article  Google Scholar 

  7. Herbst, G., Bocklisch, S.F.: Short-Time Prediction Based on Recognition of Fuzzy Time Series Patterns. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 320–329. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Saleh, B., Masseglia, F.: Discovering frequent behaviors: time is an essential element of the context. Knowledge and Information Systems 28(2), 311–331 (2010)

    Article  Google Scholar 

  9. Xu, W., Kuhnert, L., Foster, K., Bronlund, J., Potgieter, J., Diegel, O.: Object-oriented knowledge representation and discovery of human chewing behaviours. Engineering Applications of Artificial Intelligence 20(7), 1000–1012 (2007)

    Article  Google Scholar 

  10. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man and Cybernetics 3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23(2), 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yager, R.: A note on probabilities of fuzzy events. Information Sciences 18(2), 113–129 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Trillas, E., Nakama, T., García-Honrado, I.: Fuzzy Probabilities: Tentative Discussions on the Mathematical Concepts. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 139–148. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delgado, M., Fajardo, W., Molina-Solana, M. (2013). Correlated Trends: A New Representation for Imperfect and Large Dataseries. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2013. Lecture Notes in Computer Science(), vol 8132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40769-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40769-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40768-0

  • Online ISBN: 978-3-642-40769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics