Abstract
In this paper we propound the use of a number of entropy-based metrics and a visualization tool for the intrinsic evaluation of Sentiment and Reputation Analysis tasks. We provide a theoretical justification for their use and discuss how they complement other accuracy-based metrics. We apply the proposed techniques to the analysis of TASS-SEPLN and RepLab 2012 results and show how the metric is effective for system comparison purposes, for system development and postmortem evaluation.
FJVA and JCdA are supported by EU FP7 project LiMoSINe (contract 288024). CPM has been partially supported by the Spanish Government-Comisión Interministerial de Ciencia y Tecnología project TEC2011-26807 for this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhu, X., Davidson, I.: Knowledge discovery and data mining: challenges and realities. Premier reference source. Information Science Reference (2007)
Thomas, C., Balakrishnan, N.: Improvement in minority attack detection with skewness in network traffic. In: Proc. of SPIE, vol. 6973, pp. 69730N–69730N–12 (2008)
Fernandes, J.A., Irigoien, X., Goikoetxea, N., Lozano, J.A., Inza, I., Pérez, A., Bode, A.: Fish recruitment prediction, using robust supervised classification methods. Ecological Modelling 221, 338–352 (2010)
Valverde-Albacete, F.J., Peláez-Moreno, C.: Two information-theoretic tools to assess the performance of multi-class classifiers. Pattern Recognition Letters 31, 1665–1671 (2010)
Meila, M.: Comparing clusterings—an information based distance. Journal of Multivariate Analysis 28, 875–893 (2007)
Valverde-Albacete, F.J., Peláez-Moreno, C.: 100% classification accuracy considered harmful: The Normalized Information Transfer explains the accuracy paradox (submitted, 2013)
Mejía-Navarrete, D., Gallardo-Antolín, A., Peláez-Moreno, C., Valverde-Albacete, F.J.: Feature extraction assessment for an acoustic-event classification task using the entropy triangle. In: Interspeech 2010 (2011)
Villena-Román, J., García-Morera, J., Moreno-García, C., Ferrer-Ureña, L., Lana-Serrano, S.: TASS - Workshop on sentiment analysis at SEPLN (2012)
Amigó, E., Corujo, A., Gonzalo, J., Meij, E., Rijke, M.: Overview of RepLab 2012: Evaluating online management systems. In: CLEF (2012)
Greenwood, M.A., Aswani, N., Bontcheva, K.: Reputation profiling with gate. In: CLEF (2012)
Carrillo-de-Albornoz, J., Chugur, I., Amigó, E.: Using an emotion-based model and sentiment analysis techniques to classify polarity for reputation. In: CLEF (2012)
Martín-Wanton, T., Carrillo-de-Albornoz, J.: UNED at TASS 2012: Polarity classification and trending topic system. In: Workshop on Sentiment Analysis at SEPLN (2012)
Carrillo-de-Albornoz, J., Plaza, L., Gervás, P.: A hybrid approach to emotional sentence polarity and intensity classification. In: Conference on Computational Natural Language Learning, CoNLL 2010, pp. 153–161 (2010)
Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in twitter. Language Resources and Evaluation 47, 239–268 (2013)
Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a simple case of negation. In: Knowledge and Information Systems, 1–20 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valverde-Albacete, F.J., Carrillo-de-Albornoz, J., Peláez-Moreno, C. (2013). A Proposal for New Evaluation Metrics and Result Visualization Technique for Sentiment Analysis Tasks. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds) Information Access Evaluation. Multilinguality, Multimodality, and Visualization. CLEF 2013. Lecture Notes in Computer Science, vol 8138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40802-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-40802-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40801-4
Online ISBN: 978-3-642-40802-1
eBook Packages: Computer ScienceComputer Science (R0)