Skip to main content

Virtual Labs in Engineering Education: Modeling Perceived Critical Mass of Potential Adopter Teachers

  • Conference paper
Scaling up Learning for Sustained Impact (EC-TEL 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8095))

Included in the following conference series:

Abstract

Virtual labs for science experiments are a multimedia technology innovation. A possible growth pattern of the perceived critical mass for virtual labs adoption is modeled using (N=240) potential-adopter teachers based on Roger’s theory of diffusion and of perceived attributes. Results indicate that perceived critical mass influences behavior intention to adopt a technology innovation like Virtual Labs and is affected by innovation characteristics like relative advantage, ease of use and compatibility. The work presented here models the potential-adopter teacher’s perceptions and identifies the relative importance of specific factors that influence critical mass attainment for an innovation such as Virtual Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller, D., Strohmeier, S.: Design characteristics of virtual learning environments: state of research. Computers & Education 57, 2505–2516 (2011)

    Article  Google Scholar 

  2. Zelby, L.W.: Engineering Approach to Engineering Education. IEEE Transactions on Education E-11(2), 89–93 (1968)

    Article  Google Scholar 

  3. Kara, A., Ozbek, M.E., Cagiltay, N.E., Aydin, E.: Maintenance, sustainability and extendibility in virtual and remote laboratories. Procedia - Social and Behavioral Sciences 28, 722–728 (2011)

    Article  Google Scholar 

  4. Corter, J., Nickerson, J.V., Esche, S.K., Chassapis, C.: Constructing Reality: A Study of Remote, Hands-on and Simulated Laboratories. ACM Transactions on Computer-Human Interaction 14(2), Article 7 (2007)

    Google Scholar 

  5. Ma, J., Nickerson, J.V.: Hands-On, Simulated, and Remote Laboratories: A Comparative Literature Review. ACM Computing Surveys 38(3), Article 7 (2006)

    Google Scholar 

  6. Yoon, T.E., George, J.F.: Why aren’t organizations adopting virtual worlds. Computers in Human Behavior 29, 772–790 (2013)

    Article  Google Scholar 

  7. Wang, W.T., Wang, C.C.: Am empirical study of instructor adoption of web-based learning systems. Computers & Education 53, 761–774 (2009)

    Article  Google Scholar 

  8. Gustavsson, I., Garcia-Zubia, J., Nafalski, A., Pettersson, M.I.: On Objectives of Instructional Laboratories, Individual Assessment and Use of Collaborative Remote Laboratories. IEEE Transactions on Learning Technologies 2(4), 263–274 (2009)

    Article  Google Scholar 

  9. Cooper, M., Ferreira, J.M.M.: Remote Laboratories Extending Access to Science and Engineering Curricular. IEEE Transactions on Learning Technologies 2(4), 342–353 (2009)

    Article  Google Scholar 

  10. Rogers, E.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)

    Google Scholar 

  11. Grajek, M., Kretschmer, T.: Identifying critical mass in the global cellular tele-phony market. International Journal of Industrial Organization 30, 496–507 (2012)

    Article  Google Scholar 

  12. Huang, O., Duan, W.: Evolution Model and Critical Mass of E-business Plat-form Based on Complex Networks. In: Fifth Intl. Conference on Business Intelligence and Financial Engineering (2012)

    Google Scholar 

  13. Grewal, S.K., Harris, L.J.: Beyond Critical Mass: A Case Study Investigating the Use of WebCT for Course Delivery by Faculty in a Campus Based UK University. MERLOT Journal of Online Learning and Teaching 4(3) (2008)

    Google Scholar 

  14. Achuthan, K., Sreelatha, K.S., Surendran, S., Diwakar, S., Nedungadi, P., Humphreys, S., Sreekala, S., Pillai, Z., Raman, R., Deepthi, A., Gangadharan, R., Appukuttan, S., Ranganatha, J., Sambhudevan, S., Mahesh, S.: IEEE Global Humanitarian Technology Conference Proceedings, pp. 117-121 (2011)

    Google Scholar 

  15. Peng, G.: Critical Mass, Diffusion Channels, and Digital Divide. Journal of Computer Information Systems, 63–71 (2010)

    Google Scholar 

  16. Corigliano, M.A., Baggio, R.: Mobile Technologies Diffusion in Tourism: Mod-elling a Critical Mass of Adopters in Italy. In: 11th Intl. Conf. on Information Technology for Travel and Tourism (2004)

    Google Scholar 

  17. Virtual reality in the real world: History, applicationsand projections 25(9), 963–973 (November)

    Google Scholar 

  18. Jacobsen, D.M.: Examining Technology Adoption Patterns by Faculty in Higher Education. In: Proceedings of Ace 2000, Learning Technologies, Teaching and the Future of Schools, Melbourne, Australia (2000)

    Google Scholar 

  19. Loch, C., Huberman, B.: A punctuated-equilibrium model of technology diffu-sion. Management Science 45(2), 160–177 (1999)

    Article  MATH  Google Scholar 

  20. Mahler, A., Rogers, E.: The diffusion of interactive communication innovations and the critical mass: The adoption of telecommunications services by German Banks. Telecommunications Policy 23, 719–740 (1999)

    Article  Google Scholar 

  21. Cool, K., Dierickx, I., Szulanski, G.: Diffusion of innovations within organizations: electronic switching in the bell system, 1971–1982. Organization Science 8(5), 543–559 (1997)

    Article  Google Scholar 

  22. Markus, L.: Toward a ‘critical mass’ theory of interactive media: universal access, interdependence and diffusion. Communication Research 14, 491–511 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raman, R., Achuthan, K., Nedungadi, P. (2013). Virtual Labs in Engineering Education: Modeling Perceived Critical Mass of Potential Adopter Teachers. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds) Scaling up Learning for Sustained Impact. EC-TEL 2013. Lecture Notes in Computer Science, vol 8095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40814-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40814-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40813-7

  • Online ISBN: 978-3-642-40814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics