Abstract
Agent based models are highly complex and usually are being implemented using programming languages. This situation calls for adequate methods allowing for their verification that are not used in standard economic research. In order to organize this process we propose to logically decompose agent based model into three layers: conceptual model, computerized model and metamodel. The main possible problems identified using this decomposition are: (a) incomplete specification of conceptual model, (b) unexpected behavior of computerized model and (c) problems with reproduction simulation results. In order to address these issues based on literature review we draw recommendations concerning model documentation, testing and simulation reproduction that are crucial to improve their quality and precision of communication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackoff, R.L.: Towards a system of system concepts. Management Science 17(11), 661–671 (1971)
Bennett, B.S.: Simulation Fundamentals. Prentice Hall, London (1995)
Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems, in: Proceedings of National Academy of Sciences 99(3): 7280–7287, (2001)
Bragen, M., Altaweel, M.: Repast Parameters Sweeps Getting started, (2013), http://repast.sourceforge.net/docs/RepastParameterSweepsGettingStarted.pdf (accessed on May 10, 2013)
Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering: Using UML, Patterns and Java. Prentice Hall, Upper Saddle River (2009)
Casti, J.: Would-be worlds: how simulation is changing the world of science. Wiley, New York (1997)
Cirillo, R., Thimmapuram, P., Veselka, T., Koritarov, V., Conzelmann, G., Macal, C., Boyd, G., North, M., Overbye, T., Cheng, X.: Evaluating the Potential Impact of Transmission Constraints on the Operation of a Competitive Electricity Market in Illinois, Argonne National Laboratory, Argonne, IL, ANL-06/16 (report prepared for the Illinois Commerce Commission) (2006)
Cont, R.: Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models. In: Teyssière, G., Kirman, A. (eds.) Long Memory in Economics. Springer (2007)
Daum, T., Sargent, R.G.: Experimental frames in a modern modeling and simulation system. IIE Transactions 33, 181–192 (2001)
Dosi, G., Fagiolo, G., Roventini, A.: Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles. Journal of Economic Dynamics and Control 34, 1748–1767 (2010)
Edmonds, B., Hales, D.: Replication, Replication and Replication: Some Hard Lessons from Model Alignment. Journal of Artificial Societies and Social Simulation 6 (2003), http://jasss.soc.surrey.ac.uk/6/4/11.html
Farmer, J., Foley, D.: The economy needs agent-based modelling. Nature 460, 685–686 (2009)
Gallegati, M., Richiardi, M.: Agent Based Models in Economics and Complexity. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 200–223. Springer Science (2009)
Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist, 2nd edn. Open University Press, Berkshire (2005)
Gilbert, N.: Agent-Based Models. SAGE Publications (2008)
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J., Jorgensen, C., Mooij, W., Muller, B., Peer, G., Piou, C., Railsback, S., Robbins, A., Robbins, M., Rossmanith, E., Ruger, N., Strand, E., Souissi, S., Stillman, R., Vabo, R., Visser, U., DeAngelis, D.: A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115–126 (2006)
Grimm, V., Berger, U., DeAngelis, D.L., Polhill, G., Giske, J., Railsback, S.F.: The ODD protocol: a review and first update. Ecological Modeling 221, 2760–2768 (2010)
Hayek, F.A.: Individualism and economic order. University of Chicago Press, Chicago (1948)
Holland, J.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading (1995)
Kaminski, B.: Podejście wieloagentowe do modelowania rynków: metody i zastosowania, Oficyna Wydawnicza SGH (2012)
Larman, C.: Iterative and Incremental Development: A Brief History. Computer 36(6), 47–56 (2003)
Law, A.: Simulation Modeling and Analysis. McGraw-Hill (2006)
Leombruni, R.: Why are economists sceptical about agent-based simulations. Physica A 355, 103–109 (2005)
Levy, M.: Agent Based Computational Economics. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 92–112. Springer (2009)
Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation part 2: how to model with agents. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simulation Conference (2006)
Miller, J.H., Page, S.E.: Complex Adaptive Systems. Princeton University Press (2007)
Moss, S.: Agent Based Modeling and Neoclassical Economics: A Critical Perspective. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 176–184. Springer (2009)
NetLogo: NetLogo BehaviorSpace Guide, (2013), http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html (accessed on May 10, 2013)
Object Management Group, OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1 (2011)
Oechslein, C., Klügl, F., Herrler, R., Puppe, F.: UML for Behavior-Oriented Multi-Agent Simulations. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 217–226. Springer, Heidelberg (2002)
Olsen, M.: The logic of collective action. Harvard University Press, Cambridge (1965)
Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B., Tayler, P.: Artificial economic life: a simple model of a stockmarket. Physica D 75, 264–274 (1994)
Philips, A.: Mechanical Models in Economic Dynamics. Economica 17, 283–305 (1950)
Poutakidis, D., Winikoff, M., Padgham, L., Zhang, Z.: Debugging and Testing of Multi-Agent Systems using Design Artefacts. In: Bordini, R.H., et al. (eds.) Multi-Agent Programming. Springer (2009)
Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms: Review and Development Recommendations. Simulation 82, 609–623 (2006)
Richiardi, M.: Agent-based computational economics: a short introduction. The Knowledge Engineering Review 27, 137–149 (2012)
Richiardi, M., Leombruni, R., Saam, N., Sonnesa, M.: A Common Protocol for Agent Based Social Simulation. Journal of Artificial Societies and Social Simulation 9 (2006)
Riolo, R.L., Cohen, M.D., Axelrod, R.: Evolution of cooperation without reciprocity. Nature 411, 441–443 (2001)
Roussopoulos, N., Karagiannis, D.: Conceptual Modeling: Past, Present and the Continuum of the Future. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 139–152. Springer, Heidelberg (2009)
Santos, I.R., Santos, P.R.: Simulation Metamodels for Modeling Output Distribution Parameters. In: Proceedings of the 2007 Winter Simulation Conference, pp. 910–918 (2007)
Schelling, T.C.: Micromotives and macrobehavior, New York (1978)
Schroeder, R.G.: Operations Management-Decision Making in Operations Function, 4th edn. Mc Graw Hill International Editions, New York (1993)
Szufel, P.: O kosztowej efektywnosci procesow edukacyjnych, PhD Dissertation, SGH (2012)
Tesfatsion, L.: Agent-Based Computational Economics: Growing Economies From the Bottom Up. Artificial Life 8(1), 55–82 (2002)
Tesfatsion, L., Judd, K. (eds.): Handbook of Computational Economics: Agent-Based Computational Economics. North-Holland (2006)
Thiele, J.C., Kurth, W., Grimm, V.: RNetLogo: an R package for running and exploring individual-based models implemented in NetLogo. In: Methods in Ecology and Evolution. British Ecological Society (2012); Early Preview
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kamiński, B., Szufel, P. (2013). Verification of Models in Agent Based Computational Economics — Lessons from Software Engineering. In: Kobyliński, A., Sobczak, A. (eds) Perspectives in Business Informatics Research. BIR 2013. Lecture Notes in Business Information Processing, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40823-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-40823-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40822-9
Online ISBN: 978-3-642-40823-6
eBook Packages: Computer ScienceComputer Science (R0)