Skip to main content

Clinical Careflows Aided by Uncertainty Representation Models

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8073))

Included in the following conference series:

  • 2525 Accesses

Abstract

Choosing an appropriate support for Clinical Decision Support Systems is a complicated task, and dependent on the domain in which the system will intervene. The development of wide solutions, which are transversal to different clinical specialties, is impaired by the existence of complex decision moments that reflect the uncertainty and imprecision that are often present in these processes. The need for solutions that combine the relational nature of declarative knowledge with other models, capable of handling that uncertainty, is a necessity that current systems may be faced with. Following this line of thought, this work introduces an ontology for the representation of Clinical Practice Guidelines, with a case-study regarding colorectal cancer. It also presents two models, one based on Bayesian Networks, and another one on Artificial Neural Networks, for colorectal cancer prognosis. The objective is to observe how well these two ways of obtaining and representing knowledge are complementary, and how the machine learning models perform, attending to the available information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kaushal, R., Shojania, K.G., Bates, D.W.: Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Archives of Internal Medicine 163(12), 1409–1416 (2003)

    Article  Google Scholar 

  2. Musen, M.A., Shahar, Y., Shortliffe, E.H.: Clinical decision-support systems. Biomedical Informatics, 698–736 (2006)

    Google Scholar 

  3. Rosenbrand, K., Croonenborg, J., Wittenberg, J.: Guideline Development. In: Teije, A., Miksch, S., Lucas, P. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, pp. 3–22 (2008)

    Google Scholar 

  4. Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006. Annals of Oncology: Official Journal of the European Society for Medical Oncology 18(3), 581–592 (2007)

    Article  Google Scholar 

  5. McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation 10, 1–19 (2004)

    Google Scholar 

  6. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. International Journal of Medical Informatics 77(12), 787–808 (2008)

    Article  Google Scholar 

  7. Oliveira, T., Novais, P., Neves, J.: Development and implementation of clinical guidelines: An artificial intelligence perspective. Artificial Intelligence Review (2013), doi: 10.1007/s10462-013-9402-2

    Google Scholar 

  8. Ohno-Machado, L., et al.: The guideline interchange format. Journal of the American Medical Informatics Association 5(4), 357 (1998)

    Article  Google Scholar 

  9. Vier, E., Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Wilson, P.: PROforma: systems. Computer Methods and Programs in Biomedicine 2607(97) (1997)

    Google Scholar 

  10. Tu, S., et al.: The SAGE Guideline Model: achievements and overview. Journal of the American Medical Informatics Association 14(5), 589–598 (2007)

    Article  Google Scholar 

  11. Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis. Information Sciences 176, 3026–3059 (2006)

    Article  MathSciNet  Google Scholar 

  12. Horzic, M., Kopljar, M., Cupurdija, K., Bielen, D.V., Vergles, D., Lackovic, Z.: Comparison of P-POSSUM and Cr-POSSUM scores in patients undergoing colorectal cancer resection. Archives of Surgery 142(11), 1043–1048 (2007)

    Article  Google Scholar 

  13. Senagore, A.J., Warmuth, A.J., Delaney, C.P., Tekkis, P.P., Fazio, V.W.: POSSUM, p-POSSUM, and Cr-POSSUM: implementation issues in a United States health care system for prediction of outcome for colon cancer resection. Diseases of the Colon and Rectum 47(9), 1435–1441 (2004)

    Article  Google Scholar 

  14. Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2011)

    Google Scholar 

  15. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)

    Article  Google Scholar 

  16. Lantz, C.A., Nebenzahl, E.: Behavior and interpretation of the κ statistic: Resolution of the two paradoxes. Journal of Clinical Epidemiology 49(4), 431–434 (1996)

    Article  Google Scholar 

  17. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30(1), 79–82 (2005)

    Article  Google Scholar 

  18. Winawer, S., Fletcher, R., Rex, D., Bond, J., Burt, R., Ferrucci, J., Ganiats, T., Levin, T., Woolf, S., Johnson, D., Kirk, L., Litin, S., Simmang, C.: Colorectal cancer screening and surveillance: Clinical guidelines and rationale-Update based on new evidence. Gastroenterology 124(2), 544–560 (2003)

    Article  Google Scholar 

  19. Chawla, N.V.: Data mining for imbalanced datasets: An overview. In: Data Mining and Knowledge Discovery Handbook, pp. 853–867. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliveira, T., Neves, J., Barbosa, E., Novais, P. (2013). Clinical Careflows Aided by Uncertainty Representation Models. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40846-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40845-8

  • Online ISBN: 978-3-642-40846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics