Abstract
Micro actuators for tiny robots could lead to revolutionary advances in many cutting-edge applications (e.g. minimally invasive medicine). Many prototypes were hence developed, which were powered either by micro organism, by onboard mechatronic systems or by remote magnetic fields. This paper presents two evolving designs, aiming at fabricating micro actuators which can be selectively controlled by weak resonant magnetic fields. The core concept is to design a spring-mass structure to convert the vibrations of soft magnets into rotary outputs. The fabricated micro actuators could then drive propellers or revolute joints for locomotion or manipulation tasks. The proposed designs essentially directly harvest magnetic energy to perform mechanical work, avoiding complex system components from traditional motorized actuation units, such as windings, commutators, batteries, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Nanorobot for Brain Aneurysm. International Journal of Robotics Research 28(4), 558–570 (2009)
Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the Small: Part I: Microrobotics. IEEE Robotics & Automation Magazine 14(2), 92–103 (2007)
Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., Nelson, B.J.: How Should Microrobots Swim? International Journal of Robotics Research 28(12), 1434–1447 (2009)
Berg, H.C.: The Rotary Motor of Bacterial Flagella. Annual Review of Biochemistry 72, 19–54 (2003)
Behkam, B., Sitti, M.: Bacterial Flagella-Based Propulsion and on/off Motion Control of Microscale Objects. Applied Physics Letters 90(023902), 1–3 (2007)
Behkam, B., Sitti, M.: Characterization of Bacterial Actuation of Micro-Objects. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 1022–1027 (2009)
Steager, E., Kim, C.-B., Patel, J., Bith, S., Naik, C., Reber, L., Kim, M.J.: Control of Microfabricated Structures Powered by Flagellated Bacteria Using Phototaxis. Applied Physics Letters 90(263901), 1–3 (2007)
Zhang, H., Dong, S.-X., Zhang, S.-Y., Wang, T.-H., Zhang, Z.-N., Fan, L.: Ultrasonic Micro-motor Using Miniature Piezoelectric Tube with Diameter of 1.0 mm. Ultrasonics 441((s)1), e603-e606 (2006)
Watson, B., Friend, J., Yeo, L., Sitti, M.: Piezoelectric Ultrasonic Resonant Micromotor with a Volume of Less Than 1 mm3 for Use in Medical Microbots. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 2225–2230 (2009)
Yun, C.-H., Watson, B., Friend, J., Yeo, L.: A Piezoelectric Ultrasonic Linear Micromotor Using a Slotted Stator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57(8), 1868–1874 (2010)
Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields. International Journal of Robotics Research 25(5-6), 527–536 (2006)
Floyd, S., Pawashe, C., Sitti, M.: Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot. IEEE Transactions on Robotics 25(6), 1332–1342 (2009)
Pawashe, C., Floyd, S., Sitti, M.: Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. International Journal of Robotics Research 28(8), 1077–1094 (2009)
Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J.: Artificial Bacterial Flagella: Fabrication and Magnetic Control. Applied Physics Letters 94(064107), 1–3 (2009)
Honda, T., Arai, K.I., Ishiyama, K.: Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Transactions on Magnetics 32(5), 5085–5087 (1996)
Troisi, C.S., Knaflitz, M., Olivetti, E.S., Martino, L., Durin, G.: Fabrication of New Magnetic Micro-Machines for Minimally Invasive Surgery. IEEE Transactions on Magnetics 44(11), 4488–4491 (2008)
Sudo, S., Segawa, S., Honda, T.: Magnetic Swimming Mechanism in a Viscous Liquid. Journal of Intelligent Material Systems and Structures 17(8-9), 729–736 (2006)
Guo, S., Pan, Q., Khamesee, M.B.: Development of a Novel Type of Microrobot for Biomedical Application. Microsystem Technology 14(3), 307–314 (2008)
Kratochvil, B.E., Frutiger, D., Vollmers, K., Nelson, B.J.: Visual Servoing and Characterization of Resonant Magnetic Actuators for Decoupled Locomotion of Multiple Untethered Mobile Microrobots. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 1010–1015 (2009)
Frutiger, D.R., Vollmers, K., Kratochvil, B.E., Nelson, B.J.: Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents. International Journal of Robotics Research 29(5), 613–636 (2009)
Nagy, Z., Frutiger, D.R., Leine, R.I., Glocker, C., Nelson, B.J.: Modeling and Analysis of Wireless Resonant Magnetic Microactuators. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, pp. 1598–1603 (2010)
Kirschvink, J.L.: Uniform Magnetic Fields and Double Wrapped Coil Systems: Improved Techniques for the Design of Bioelectromagnetic Experiments. Bioelectromagnetics 13(5), 401–411 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, K., Liu, G. (2013). Design of Selectively Controllable Micro Actuators Powered by Remote Resonant Magnetic Fields. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40849-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-40849-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40848-9
Online ISBN: 978-3-642-40849-6
eBook Packages: Computer ScienceComputer Science (R0)