Skip to main content

Design of Selectively Controllable Micro Actuators Powered by Remote Resonant Magnetic Fields

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8103))

Included in the following conference series:

Abstract

Micro actuators for tiny robots could lead to revolutionary advances in many cutting-edge applications (e.g. minimally invasive medicine). Many prototypes were hence developed, which were powered either by micro organism, by onboard mechatronic systems or by remote magnetic fields. This paper presents two evolving designs, aiming at fabricating micro actuators which can be selectively controlled by weak resonant magnetic fields. The core concept is to design a spring-mass structure to convert the vibrations of soft magnets into rotary outputs. The fabricated micro actuators could then drive propellers or revolute joints for locomotion or manipulation tasks. The proposed designs essentially directly harvest magnetic energy to perform mechanical work, avoiding complex system components from traditional motorized actuation units, such as windings, commutators, batteries, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Nanorobot for Brain Aneurysm. International Journal of Robotics Research 28(4), 558–570 (2009)

    Article  Google Scholar 

  2. Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the Small: Part I: Microrobotics. IEEE Robotics & Automation Magazine 14(2), 92–103 (2007)

    Article  Google Scholar 

  3. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., Nelson, B.J.: How Should Microrobots Swim? International Journal of Robotics Research 28(12), 1434–1447 (2009)

    Google Scholar 

  4. Berg, H.C.: The Rotary Motor of Bacterial Flagella. Annual Review of Biochemistry 72, 19–54 (2003)

    Article  Google Scholar 

  5. Behkam, B., Sitti, M.: Bacterial Flagella-Based Propulsion and on/off Motion Control of Microscale Objects. Applied Physics Letters 90(023902), 1–3 (2007)

    Google Scholar 

  6. Behkam, B., Sitti, M.: Characterization of Bacterial Actuation of Micro-Objects. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 1022–1027 (2009)

    Google Scholar 

  7. Steager, E., Kim, C.-B., Patel, J., Bith, S., Naik, C., Reber, L., Kim, M.J.: Control of Microfabricated Structures Powered by Flagellated Bacteria Using Phototaxis. Applied Physics Letters 90(263901), 1–3 (2007)

    Google Scholar 

  8. Zhang, H., Dong, S.-X., Zhang, S.-Y., Wang, T.-H., Zhang, Z.-N., Fan, L.: Ultrasonic Micro-motor Using Miniature Piezoelectric Tube with Diameter of 1.0 mm. Ultrasonics 441((s)1), e603-e606 (2006)

    Google Scholar 

  9. Watson, B., Friend, J., Yeo, L., Sitti, M.: Piezoelectric Ultrasonic Resonant Micromotor with a Volume of Less Than 1 mm3 for Use in Medical Microbots. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 2225–2230 (2009)

    Google Scholar 

  10. Yun, C.-H., Watson, B., Friend, J., Yeo, L.: A Piezoelectric Ultrasonic Linear Micromotor Using a Slotted Stator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57(8), 1868–1874 (2010)

    Article  Google Scholar 

  11. Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields. International Journal of Robotics Research 25(5-6), 527–536 (2006)

    Article  Google Scholar 

  12. Floyd, S., Pawashe, C., Sitti, M.: Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot. IEEE Transactions on Robotics 25(6), 1332–1342 (2009)

    Article  Google Scholar 

  13. Pawashe, C., Floyd, S., Sitti, M.: Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. International Journal of Robotics Research 28(8), 1077–1094 (2009)

    Article  Google Scholar 

  14. Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J.: Artificial Bacterial Flagella: Fabrication and Magnetic Control. Applied Physics Letters 94(064107), 1–3 (2009)

    Google Scholar 

  15. Honda, T., Arai, K.I., Ishiyama, K.: Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Transactions on Magnetics 32(5), 5085–5087 (1996)

    Article  Google Scholar 

  16. Troisi, C.S., Knaflitz, M., Olivetti, E.S., Martino, L., Durin, G.: Fabrication of New Magnetic Micro-Machines for Minimally Invasive Surgery. IEEE Transactions on Magnetics 44(11), 4488–4491 (2008)

    Article  Google Scholar 

  17. Sudo, S., Segawa, S., Honda, T.: Magnetic Swimming Mechanism in a Viscous Liquid. Journal of Intelligent Material Systems and Structures 17(8-9), 729–736 (2006)

    Article  Google Scholar 

  18. Guo, S., Pan, Q., Khamesee, M.B.: Development of a Novel Type of Microrobot for Biomedical Application. Microsystem Technology 14(3), 307–314 (2008)

    Article  Google Scholar 

  19. Kratochvil, B.E., Frutiger, D., Vollmers, K., Nelson, B.J.: Visual Servoing and Characterization of Resonant Magnetic Actuators for Decoupled Locomotion of Multiple Untethered Mobile Microrobots. In: IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, pp. 1010–1015 (2009)

    Google Scholar 

  20. Frutiger, D.R., Vollmers, K., Kratochvil, B.E., Nelson, B.J.: Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents. International Journal of Robotics Research 29(5), 613–636 (2009)

    Google Scholar 

  21. Nagy, Z., Frutiger, D.R., Leine, R.I., Glocker, C., Nelson, B.J.: Modeling and Analysis of Wireless Resonant Magnetic Microactuators. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, pp. 1598–1603 (2010)

    Google Scholar 

  22. Kirschvink, J.L.: Uniform Magnetic Fields and Double Wrapped Coil Systems: Improved Techniques for the Design of Bioelectromagnetic Experiments. Bioelectromagnetics 13(5), 401–411 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, K., Liu, G. (2013). Design of Selectively Controllable Micro Actuators Powered by Remote Resonant Magnetic Fields. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40849-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40849-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40848-9

  • Online ISBN: 978-3-642-40849-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics