Skip to main content

Optimal Kinematic Calibration of the 6-UPS Parallel Manipulator

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Included in the following conference series:

Abstract

This paper presents the optimal kinematic calibration of the Hexapod (6-UPS) parallel manipulator based on a new observability index. The polytope description, rather than the widely used ellipsoid one, is introduced to depict the inaccuracy of the identified parameters. Then, the infinity-norm of the residual errors is utilized to assess the calibration precision of the kinematic parameters, which should be minimized during the process of measurement configurations selection. In order to find the optimal configurations, the Particle Swarm Optimization (PSO) algorithm is employed in the proposed method and a collision mechanism is added to cope with the joint space boundary constraint of the studied manipulator. In the end, a numerical example is studied to verify the correctness and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mooring, B., Roth, Z., Driels, M.: Fundamentals of Manipulator Calibration. John Wiley & Sons (1991)

    Google Scholar 

  2. Driels, M., Pathre, U.: Significance of observation strategy on the design of robot calibration experiments. Journal of Robotic Systems 7(2), 197–223 (1990)

    Article  Google Scholar 

  3. Borm, J., Meng, C.: Determination of optimal measurement configurations for robot calibration based on observability measure. International Journal of Robotics Research 10(1), 51–63 (1991)

    Article  Google Scholar 

  4. Khalil, W., Gautier, M., Enguehard, C.: Identifiable parameters and optimum configurations for robot calibration. Robotica 9(1), 63–70 (1991)

    Article  Google Scholar 

  5. Zhuang, H., Wang, K., Roth, Z.: Optimal selection of measurement configurations for robot calibration using simulated annealing. In: 1994 IEEE International Conference on Robotics and Automation, pp. 393–398 (1994)

    Google Scholar 

  6. Daney, D., Papegay, Y., Madeline, B.: Choosing measurement poses for robot calibration with the local convergence method and tabu search. International Journal of Robotics Research 24(6), 501–518 (2005)

    Article  Google Scholar 

  7. Verl, A., Boye, T., PottD, A.: Measurement pose selection and calibration forecast for manipulators with complex kinematic structures. CIRP Annals-Manufacturing Technology 57(1), 425–428 (2005)

    Article  Google Scholar 

  8. Menq, C., Borm, J., Lai, J.: Identification and observability measure of a basis set of error parameters in robot calibration. Journal of Mechanical Transmission, Automation Design 111(4), 513–518 (1989)

    Article  Google Scholar 

  9. Nahvi, A., Hollerbach, J.: The noise amplification index for optimal pose selection in robot calibration. In: 1996 IEEE International Conference on Robotics and Automation, pp. 647–654 (1996)

    Google Scholar 

  10. Nahvi, A., Hollerbach, J., Hayward, V.: Calibration of a parallel robot using multiple kinematic closed loops. In: 1994 IEEE International Conference on Robotics and Automation, pp. 407–412 (1994)

    Google Scholar 

  11. Sun, Y., Hollerbach, J.: Observability index selection for robot calibration. In: 2008 IEEE International Conference on Robotics and Automation, pp. 831–836 (2008)

    Google Scholar 

  12. Lee, J.: A study on the manipulability measures for robot manipulators. In: 1997 IEEE International Conference on Intelligent Robots and Systems, pp. 1458–1464 (1997)

    Google Scholar 

  13. Hwang, Y., Lee, J., Hsia, T.: A recursive dimension-growing method for computing robotic manipulability polytope. In: 2000 IEEE International Conference on Robotics and Automation, pp. 2569C–2574C (2000)

    Google Scholar 

  14. Nategh, M., Agheli, M.: A total solution to kinematic calibration of hexapod machine tools with a minimum number of measurement configurations and superior accuracies. International Journal of Machine Tools and Manufacture 49(15), 1155–1164 (2009)

    Article  Google Scholar 

  15. Shim, I., Yoon, Y.: Stabilized minimum infinity-norm torque solution for redundant manipulators. Robotica 16(2), 193C–205C (1998)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 IEEE International Conference on Netual Network, pp. 1942–1948 (1995)

    Google Scholar 

  17. Coath, G., Halgamuge, S.: A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems. In: 2003 IEEE Congress on Evolutionary Computation, pp. 2419–2425 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G., Wang, H., Lin, Z. (2013). Optimal Kinematic Calibration of the 6-UPS Parallel Manipulator. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics