Skip to main content

Conceptual Connections around Density Determination in Cellular Automata

  • Conference paper
Cellular Automata and Discrete Complex Systems (AUTOMATA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8155))

Abstract

A recurring and well studied benchmark problem in the context of computations with cellular automata is the attempt to determine which is the most frequent cell state in an arbitrary initial configuration. Although extremely simple in formulation, the problem has unveiled a rich web of conceptual connections which, at the same time, have enlarged and challenged our understanding about how to perform computations within cellular automata. Here, we outline such a conceptual web, and provide a personal assessment of some of its loose ends, with possibly fruitful paths to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Sanz, R., Bull, L.: A very effective density classifier two-dimensional cellular automaton with memory. Journal of Physics A 42(48), 485101 (2009)

    Article  MathSciNet  Google Scholar 

  2. Betel, H., de Oliveira, P.P.B., Flocchini, P.: Solving the parity problem in one-dimensional cellular automata. Natural Computing 12 (2013)

    Google Scholar 

  3. Boccara, N., Fukś, H.: Cellular automaton rules conserving the number of active sites. Journal of Physics A 31, 6007–6018 (1998)

    Article  MATH  Google Scholar 

  4. Boccara, N., Fukś, H.: Number-conserving cellular automaton rules. Fundamenta Informaticae 52, 1–13 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Bušić, A., Fatès, N., Mairesse, J., Marcovici, I.: Density classification on infinite lattices and trees. Electronic Journal of Probability 18(51), 1–22 (2013)

    MathSciNet  Google Scholar 

  6. Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: Classes, dynamics, and decidability. Information and Computation 215, 32–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Oliveira, P.P.B.: Where are the good CA rules for the density classification task? In: Proc. of the 2004 NKS Conference, Boston (April 2004), http://www.wolframscience.com/conference/2004/presentations/HTMLLinks/index_49.html

  8. de Oliveira, P.P.B., Bortot, J.C., Oliveira, G.M.B.: The best currently known class of dynamically equivalent cellular automata rules for density classification. Neurocomputing 70(1-3), 35–43 (2006)

    Article  Google Scholar 

  9. de Oliveira, P.P.B., Faria, F., Zanon, R.M., Leite, R.M.: Computational evidence against the possibility of density determination with non-uniform arrangements of elementary rules (manuscript under preparation 2013)

    Google Scholar 

  10. Fatès, N.: A note on the density classification problem in two dimensions. In: Formenti, E. (ed.) Proc. of the 18th International Workshop on Cellular Automata and Discrete Complex Systems: Exploratory Papers Proceedings, pp. 11–18 (2012) Rapport de Recherche I3S - ISRN: I3S/RR-2012-04-FR

    Google Scholar 

  11. Fatès, N.A.: Stochastic cellular automata solutions to the density classification problem - When randomness helps computing. Theory of Computing Systems 53(2), 223–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flocchini, P.: Contamination and decontamination in majority-based systems. Journal of Cellular Automata 4(3), 183–200 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Fukś, H.: Solution of the density classification problem with two cellular automata rules. Physics Review E 55, 2081R–2084R (1997)

    Google Scholar 

  14. Fukś, H.: A class of cellular automata equivalent to deterministic particle systems. In: Feng, S., Lawniczak, A.T., Varadhan, S.R.S. (eds.) Hydrodynamic Limits and Related Topics, pp. 57–69. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  15. Fukś, H.: Nondeterministic density classification with diffusive probabilistic cellular automata. Physical Review E 66(6), 066106 (2002)

    Article  Google Scholar 

  16. Gacs, P., Kurdyumov, G.L., Levin, L.A.: One-dimensional uniform arrays that wash out finite islands. Problemy Peredachi Informatsii 14, 92–98 (1978)

    Google Scholar 

  17. Lanchier, N., Neufer, J.: Stochastic dynamics on hypergraphs and the spatial majority rule model. Journal of Statistical Physics 151(1-2), 21–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Land, M.W.S., Belew, R.K.: No two-state CA for density classification exists. Physical Review Letters 74(25), 5148 (1995)

    Article  Google Scholar 

  19. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kari, J., Le Gloannec, B.: Modified traffic cellular automaton for the density classification task. Fundamenta Informaticae 116(1-4), 141–156 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Maiti, N.S., Munshi, S., Pal Chaudhuri, P.: An analytical formulation for cellular automata (CA) based solution of density classification task (DCT). In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 147–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Martins, C.L.M., de Oliveira, P.P.B.: Evolving sequential combinations of elementary cellular automata rules. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 461–470. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Mitchell, M.: Computation in cellular automata: A selected review. In: Gramss, T., Bornholt, S., Gross, M., Mitchell, M., Pellizzari, T. (eds.) Non-Standard Computation, pp. 95–140. Wiley-VCH, Weinheim (1998)

    Google Scholar 

  24. Morales, F., Crutchfield, J., Mitchell, M.: Evolving two-dimensional cellular automata to perform density classification: a report on work in progress. Parallel Computing 27, 571–585 (2000)

    Article  Google Scholar 

  25. Moreira, A.A., Mathur, A., Diermeier, D., Amaral, L.A.N.: Efficient system-wide coordination in noisy environments. Proc. of the National Academy of Sciences 101(33), 12085–12090 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naskar, N., Das, S.: Characterization of non-uniform cellular automata having only two point states - 0n and 1n. In: Proc. of the 18th International Workshop on Cellular Automata and Discrete Complex Systems: Exploratory Papers Proceedings, pp. 29–37 (2012) Rapport de Recherche I3S - ISRN: I3S/RR-2012-04-FR

    Google Scholar 

  27. Oliveira, G.M.B., Siqueira, S.R.C.: Parameter characterization of two-dimensional cellular automata rule space. Physica D 217(1), 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliveira, G.M.B., Martins, L.G.A., Carvalho, L.B., Fynn, E.: Some investigations about synchronization and density classification tasks in one-dimensional and two-dimensional cellular automata rule spaces. In: de Oliveira, P.P.B., Kari, J. (eds.) Proc. of Automata 2009: 15th International Workshop on Cellular Automata and Discrete Complex Systems, pp. 209–230. Luniver Press & Universidade Presbiteriana Mackenzie, So Paulo (2009)

    Google Scholar 

  29. Packard, N.H.: Adaptation towards the edge of the chaos. In: Kelso, J.A.S., Mandell, A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

    Google Scholar 

  30. Reynaga, R., Amthauer, E.: Two-dimensional cellular automata of radius one for density classification task ρ = 1/2. Pattern Recognition Letters 24(15), 2849–2856 (2003)

    Article  MATH  Google Scholar 

  31. Sahoo, S., Choudhury, P.P., Pal, A., Nayak, B.K.: Solutions on 1D and 2D density classification problem using programmable cellular automata. arXiv:0902.2671 [nlin.CG], 14 pages (2009)

    Google Scholar 

  32. Schranko, A., de Oliveira, P.P.B.: Towards the definition of conservation degree for one-dimensional cellular automata rules. Journal of Cellular Automata 5(4-5), 383–401 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Gómez Soto, -M., Fukś, H.: Performance of the majority voting rule in solving the density classification problem in high dimension. J. Phys. A: Math. Theor 44, art. no. 444101 (2011)

    Google Scholar 

  34. Stone, C., Bull, L.: Evolution of cellular automata with memory: The density classification task. BioSystems 97(2), 108–116 (2009)

    Article  Google Scholar 

  35. Tomassini, M., Venzi, M.: Evolving robust asynchronous cellular automata for the density task. Complex Systems 13(3), 185–204 (2002)

    MathSciNet  Google Scholar 

  36. Vèrel, S., Collard, P., Tomassini, M., Vanneschi, L.: Fitness landscape of the cellular automata majority problem: View from the Olympus. Theoretical Computer Science 378, 54–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vielhaber, M.: Computing by Temporal Order: Asynchronous Cellular Automata. In: Formenti, E. (ed.) Proc. of the 18th International Workshop on Cellular Automata and Discrete Complex Systems: Electronic Proc. in Theoretical Computer Science, vol. 90, pp. 166–176 (2012)

    Google Scholar 

  38. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

    Google Scholar 

  39. Wolz, D., de Oliveira, P.P.B.: Very effective evolutionary techniques for searching cellular automata rule spaces. Journal of Cellular Automata 3(4), 289–312 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oliveira, P.P.B. (2013). Conceptual Connections around Density Determination in Cellular Automata. In: Kari, J., Kutrib, M., Malcher, A. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2013. Lecture Notes in Computer Science, vol 8155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40867-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40867-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40866-3

  • Online ISBN: 978-3-642-40867-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics