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Abstract. Label Ranking (LR) problems, such as predicting rankings of
financial analysts, are becoming increasingly important in data mining.
While there has been a significant amount of work on the development
of learning algorithms for LR in recent years, pre-processing methods
for LR are still very scarce. However, some methods, like Naive Bayes
for LR and APRIORI-LR, cannot deal with real-valued data directly.
As a make-shift solution, one could consider conventional discretization
methods used in classification, by simply treating each unique ranking
as a separate class. In this paper, we show that such an approach has
several disadvantages. As an alternative, we propose an adaptation of
an existing method, MDLP, specifically for LR problems. We illustrate
the advantages of the new method using synthetic data. Additionally,
we present results obtained on several benchmark datasets. The results
clearly indicate that the discretization is performing as expected and in
some cases improves the results of the learning algorithms.

1 Introduction

A reasonable number of learning algorithms has been created or adapted for
LR in recent years [15, 11, 7, 4, 5]. LR studies the problem of learning a mapping
from instances to rankings over a finite number of predefined labels. It can be
considered as a variant of the conventional classification problem [3]. However,
in contrast to a classification setting, where the objective is to assign examples
to a specific class, in LR we are interested in assigning a complete preference
order of the labels to every example. An additional difference is that the true
(possibly partial) ranking of the labels is available for the training examples.

Discretization, from a general point of view, is the process of partitioning a
given interval into a set of discrete sub-intervals. It is usually used to split con-
tinuous intervals into two or more sub-intervals which can be treated as nominal
values. This pre-processing technique enables the application to numerical data
of learning methods that are otherwise unable to process them directly (like



Bayesian Networks and Rule Learning methods). In theory, a good discretiza-
tion should have a good balance between the loss of information and the number
of partitions [13].

Discretization methods come in two flavors, depending on whether they do, or
do not involve target information. These are usually referred to as supervised and
unsupervised, respectively. Previous research found that the supervised methods
produce more accurate discretization than unsupervised methods [8]. To the best
of our knowledge, there are no supervised discretization methods for LR. Hence,
our proposal for ranking-sensitive discretization is a useful contribution for the
LR community.

We propose an adaptation of a well-known supervised discretization method,
the Minimum Description Length Principle (MDLP) [10], for LR. The method
uses an entropy-like measure for a set of rankings based on a similarity measure
for rankings. Despite this basic heuristic approach, the results observed show
that the method is behaves as expected in an LR setting.

The paper is organized as follows: Section 2 introduces the LR problem and
the task of association rule mining. Section 3 introduces discretization and Sec-
tion 4 describes the method proposed here. Section 5 presents the experimental
setup and discusses the results. Finally, Section 6 concludes this paper.

2 Label Ranking

The LR task is similar to classification. In classification, given an instance x
from the instance space X, the goal is to predict the label (or class) λ to which
x belongs, from a pre-defined set L = {λ1, . . . , λn}. In LR the goal is to predict
the ranking of the labels in L that are associated with x. We assume that the
ranking is a total order over L defined on the permutation space Ω. A total
order can be seen as a permutation π of the set {1, . . . , n}, such that π(a) is the
position of λa in π.5

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution over
Ω. This means that, for each x ∈ X, there exists a probability distribution P (·|x)
such that, for every π ∈ Ω, P (π|x) is the probability that π is the ranking asso-
ciated with x. The goal in LR is to learn the mapping X→ Ω. The training data
is a set of instances T = {〈xi, πi〉}, i = 1, . . . , n, where xi are the independent
variables describing instance i and πi is the corresponding target ranking.

Given an instance x with label ranking π, and the ranking π̂ predicted by an
LR model, we need to evaluate the accuracy of the prediction. For that, we need
a loss function on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(i, j)|π(i) > π(j) ∧ π̂(i) < π̂(j)}

which, if normalized to the interval [−1, 1], is equivalent to Kendall’s τ coefficient
[12], which is a correlation measure where D(π, π) = 1 and D(π, π−1) = −1
(here, π−1 denotes the inverse order of π).

5 This assumption may be relaxed [3].



The accuracy of a model can be estimated by averaging this function over a
set of examples. This measure has been used for evaluation in recent LR studies
[3] and, thus, we will use it here as well. However, other correlation measures,
like Spearman’s rank correlation coefficient [16], can be used equally well, were
one so inclined.

Given the similarities between LR and classification, one could consider
workarounds that treat the label ranking problem essentially as a classification
problem.

Let us define a basic pre-processing method, which replaces the rankings with
classes, as Ranking As Class (RAC).

∀πi ∈ Ω, π → λi

This method has a number of disadvantages, as discussed in the next section, but
it allows the use of all pre-processing and prediction methods for classification
in LR problems. However, as we show in this work, this approach is neither the
most effective nor the most accurate.

2.1 Association Rules for Label Ranking

Label Ranking Association Rules (LRAR) [7] are a straightforward adaptation
of class Association Rules (CAR):

A→ π

where A ⊆ desc (X) and π ∈ Ω. Similar to how predictions are made in CBA
(Classification Based on Associations) [14], when an example matches the rule
A→ π, the predicted ranking is π.

If the RAC method is used, the number of classes can be extremely large, up
to a maximum of k!, where k is the size of the set of labels, L. This means that
the amount of data required to learn a reasonable mapping X→ Ω is too big.

Secondly, this approach does not take into account the differences in nature
between label rankings and classes. In classification, two examples either have
the same class or not, whereas in LR some rankings are more similar than others,
as they only differ in one or two swaps or labels. In this regard, LR is more similar
to regression than to classification. This property can be used in the induction
of prediction models. In regression, a large number of observations with a given
target value, say 5.3, increases the probability of observing similar values, say
5.4 or 5.2, but not so much for very different values, say -3.1 or 100.2. A similar
reasoning was done for LR in [7]. Let us consider the case of a data set in which
ranking πa = {A,B,C,D,E} occurs in 1% of the examples. Treating rankings
as classes would mean that P (πa) = 0.01. Let us further consider that the
rankings πb = {A,B,C,E,D}, πc = {B,A,C,D,E} and πd = {A,C,B,D,E}
occur in 50% of the examples. Taking into account the stochastic nature of these
rankings [3], P (πa) = 0.01 seems to underestimate the probability of observing
πa. In other words it is expected that the observation of πb, πc and πd increases



the probability of observing πa and vice-versa, because they are similar to each
other.

This affects even rankings which are not observed in the available data. For
example, even though πe = {A,B,D,C,E} is not present in the data set it
would not be entirely unexpected to see it in future data.

Similarity-based Support and Confidence Given a measure of similarity
between rankings s(πa, πb), the support of the rule A→ π is defined as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n

This is, essentially, assigning a weight to each target ranking in the training,
πi, data that represents its contribution to the probability that π may be ob-
served. Some instances xi ∈ X give full contribution to the support count (i.e.,
1), while others may give partial or even a null contribution.

Any function that measures the similarity between two rankings or permuta-
tions can be used, such as Kendall’s τ or Spearman’s ρ. The function used here
is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θsup

0 otherwise
(1)

where s′ is a similarity function. This general form assumes that below a given
threshold, θsup, it is not useful to discriminate between different similarity values,
as they are so different from πa. This means that, the support sup of 〈A, πa〉 will
have contributions from all the ruleitems of the form 〈A, πb〉, for all πb where
s′(πa, πb) > θsup.

The confidence of a rule A→ π is obtained simply by replacing the measure
of support with the new one.

conflr (A→ π) =
suplr (A→ π)

sup (A)

Given that the loss function that we aim to minimize is known beforehand, it
makes sense to use it to measure the similarity between rankings. Therefore, we
use Kendall’s τ . In this case, we think that θsup = 0 would be a reasonable value,
given that it separates the negative from the positive contributions. Table 1
shows an example of a label ranking dataset represented following this approach.

To present a more clear interpretation, the example given in Table 1, the
instance

({A1 = L,A2 = XL,A3 = S}) (TID = 1)

contributes 1 to the support count of the ruleitem:

〈{A1 = L,A2 = XL,A3 = S}, π3〉



Table 1. An example of a label ranking dataset to be processed by the APRIORI-LR
algorithm.

π1 π2 π3

TID A1 A2 A3 (1, 3, 2) (2, 1, 3) (2, 3, 1)

1 L XL S 0.33 0.00 1.00
2 XXL XS S 0.00 1.00 0.00
3 L XL XS 1.00 0.00 0.33

The same instance will also give a small contribution of 0.33 to the support
count of the ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π1〉

given their similarity. On the other hand, no contribution is given to the count
used for the support of ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π2〉

which makes sense as they are clearly different.

3 Discretization

Several Data Mining (DM) algorithms can improve their performance by us-
ing discretized versions of continuous-valued attributes [9]. Given that a large
number of algorithms, like the Naive Bayes classifier, cannot work without dis-
cretized data [13] and the majority of real datasets have continuous variables, a
good discretization method can be very relevant for the accuracy of the models.
Discretization methods deal with continuous variables by partitioning them into
intervals or ranges. Then, each of these intervals can be interpreted as a nominal
value by DM algorithms.

The main issue in discretization is the choice of the intervals because a con-
tinuous variable can be discretized in an infinite number of ways. An ideal dis-
cretization method finds a reasonable number6 of cut points that split the data
into meaningful intervals. For classification datasets, a meaningful interval should
be coherent with the class distribution along the variable.

Discretization approaches can be divided into two groups:

Supervised vs Unsupervised When dealing with classification datasets the dis-
cretization methods can use the values of the target variable or not. These are re-
ferred to as supervised and unsupervised respectively. The unsupervised methods
ignore the classes of the objects and divide the interval into a user-defined num-
ber of bins. Supervised methods take into account the distribution of the class
labels in the discretization process. Previous research states that the supervised
methods tend to produce better discretizations than unsupervised methods [8].

6 An extreme discretization approach would create one nominal value for each contin-
uous value but this is naturally not a reasonable approach.



Top-down vs Bottom-up Discretization methods with a Top-down or Bottom-up
approach start by sorting the dataset with respect to the variable which will
be discretized. In the Top-down approach, the method starts with an interval
containing all points. Then, it recursively splits the intervals into sub-intervals,
until a stopping criteria is reached.

In the Bottom-up approach, the method starts with the maximum number of
intervals (i.e., one for each value) and then iteratively merges them recursively
until a stopping criteria is satisfied.

3.1 Entropy based methods

Several methods, such as [6, 10], perform discretization by optimizing entropy.
In classification, class entropy is a measure of uncertainty in a finite interval
of classes and it can be used in the search of candidate partitions. A good
partition is such that it minimizes the overall entropy in its subsets. Likewise,
in discretization, a good partition of the continuous variable minimizes the class
entropy in the subsets of examples it creates. In [10] it was shown that optimal
cut points must be between instances of distinct classes. In practical terms, for
all possible partitions the class information entropy is calculated and compared
with the entropy without partitions. This can be done recursively until some
stopping criterion is satisfied. The stopping criteria can be defined by a user or
by a heuristic method like MDLP.

4 Discretization for Label Ranking

A supervised discretization method for LR should take into account the prop-
erties of rankings as target variables. In this work, we propose an adaptation of
the Shannon entropy for rankings. This entropy will be used in conjuction with
MDLP as stopping criterion, the same way it is used for classification. First we
describe our adaptation of the entropy for rankings and then we show how to
integrate it with MDLP.

The entropy of classes presented in [10], which derives from the Shannon
entropy, is defined as:

Ent (S) = −
k∑
i=1

P (Ci, S) log (P (Ci, S)) (2)

where P (Ci, S) stands for the proportion of examples with class Ci in a subset
S and k is the total number of classes in S.

P (Ci, S) =
#Ci
N

N is the number of instances in the subset S.
As shown in equation 2 the Shannon entropy of a set of classes depends on

the relative proportion of each class.



4.1 Entropy of rankings

In this section, we explain how to adapt the entropy of classes used in [10] for
LR. We start by motivating our approach with a discussion of the use in LR of
the concept of entropy from classification. We then show in detail our heuristic
adaptation of entropy for rankings.

To better motivate and explain our approach, we introduce a very simple
synthetic dataset, Dex, presented in Table 2. In this test dataset we have eight
distinct rankings in the target column π. Even though they are all distinct,
the first five are very similar (the label ranks are mostly ascending), but very
different from the last three (mostly descending ranks). Without any further
considerations, it is natural to assume that an optimal split point for Dex should
lie between values 0.5 and 0.6 (instances 5 and 6).

Table 2. Example dataset Dex: Small artificial dataset with some noise in the rankings

TID Att π λ

1 0.1 (1,2,4,3,5) a
2 0.2 (1,2,3,4,5) b
3 0.3 (2,1,3,4,5) c
4 0.4 (1,3,2,4,5) d
5 0.5 (1,2,3,5,4) e
6 0.6 (5,4,3,1,2) f
7 0.7 (4,5,3,2,1) g
8 0.8 (5,3,4,2,1) h

In the RAC approach, the rankings are transformed into eight distinct classes
as shown in column λ. As the table shows, the natural split point identified earlier
is completely undetectable in column λ.

As shown in equation 2, the entropy of a set of classes depends on the relative
proportion of a class. If we measure the ranking proportion the same way, we
get:

P (πi, S) = 1/8,∀πi ∈ Dex

We adapt this concept using the same ranking distance-based approach used
to adapt the support for LRAR in APRIORI-LR [7] (equation 3). In fact, a
similar line of reasoning as the one in Section 2.1 can be followed here. The
uncertainty associated with a certain ranking decreases in the presence of similar
– although not equal – rankings. Furthermore, this decrease is proportional to
that distance.

Pπ (πi, S) =

∑N
j=1 s (πi, πj)∑K

i=1

∑N
j=1 s (πi, πj)

(3)

Where K is the number of distinct rankings in S.
As in [7], we use Kendall τ and the negative correlations are ignored (sec-

tion 2.1). Note that a parallel can also be established with the frequentist view



used in entropy. Since Kendall τ is computed from the proportion of concor-
dant pairs of labels, this can be seen as the proportion of concordant pairwise
comparisons.

However, this approach alone is not enough to give a fair measure for the
entropy of rankings. The entropy of the set of classes {λ1, λ2} is the same as
{λ1, λ3} or {λ2, λ3}. This happens because, λ1 is as different from λ2 as λ2 is
from λ3. However, in LR, distinct rankings can range from completely different
to very similar. Considering these two sets:

1) {(1, 2, 3, 4, 5) , (1, 2, 3, 5, 4)}

2) {(1, 2, 3, 4, 5) , (5, 4, 3, 2, 1)}

and since the ranking proportions will be the same in 1) and 2), the entropy will
be the same. Also, from a pairwise-comparison point of view, the two similar
rankings in set 1) match 14 pairs from a total of 15, while the rankings in 2) do
not match any.

Considering that entropy is a measure of disorder, we believe that it makes
sense to expect lower entropy for sets with similar rankings and bigger entropy
for sets with completely different rankings.

For this reason we propose to add an extra parameter in the formula of
entropy for rankings (equation 4) to force lower values on sets of similar rankings.
This means we have to adapt Shannon entropy for a set of rankings to be more
sensitive to the similarity of the rankings present in the set.

EntLR (S) =

K∑
i=1

P (πi, S) log (P (πi, S)) log (Q (πi, S)) (4)

where Q (πi, S) is the average similarity of the ranking πi with the rankings in
the subset S defined as:

Q (πi, S) =

∑N
j=1 s (πi, πj)

N
(5)

For the same reason we find noise in independent variables, it is expected
to observe the same phenomenon in ranking data. As the number of labels in-
creases, we expect to observe it with more frequency, since the number of possible
combinations for k labels grows to k!. As an example, instances 6, 7 and 8 in
Dex can correspond to observations of the same “real” ranking, say (5, 4, 3, 2, 1),
but with some noise.

This measure of entropy for rankings we propose here will make the dis-
cretization method more robust to noise present in the rankings. In order to
support this statement we provide an analysis of the behavior of the method
with induced and controlled noise.

The results presented do not include an analysis on partial orders. Given
that, Kendall τ is a measure of the proportion of the concordant pairs of labels,
this entropy measure can still work with partial orders, as long as there is at
least one pairwise per instance.



4.2 MDLP for LR

MDLP [10] is a well known method used to discretize continuous attributes for
classification learning. The method tries to maximize the information gain and
considers all the classes of the data as completely distinct classes. For this reason,
we believe that the latter, as is, is not suitable for datasets which have rankings
instead of classes in the target.

MDLP measures the information gain of a given split point by comparing
the values of entropy. For each split point considered, the entropy of the initial
interval is compared with the weighted sum of the entropy of the two resulting
intervals. Given an interval S:

GainLR (A, T ;S) = EntLR (S)− |S1|
N

EntLR (S1)− |S2|
N

EntLR (S2)

Where |S1| and |S2| is the number of instances in the left side (S1) and the
number of instances in the right side (S2) of the cut point T , respectively, in the
attribute A.

After the adaptation of entropy for sets of rankings proposed in Section 4.1,
Minimum Description Length Principle for Ranking data (MDLP-R) comes in
a natural way. We only need to replace the entropy for rankings in the MDLP
definition presented in [10], which we transcribe below:

MDLPC Criterion The partition induced by a cut point T for a set S of N
examples is accepted iff

GainLR (A, T ;S) >
log2 (N − 1)

N
+
∆LR (A, T ;S)

N

and it is rejected otherwise.
Where ∆LR (A, T ;S) is equal to:

log2
(
3K − 2

)
− [KEntLR (S)−K1EntLR (S1)−K2EntLR (S2)]

5 Experimental Results

Since what we are proposing is essentially a pre-processing method, the quality
of its discretization is hard to measure in a direct way. For this reason, the
experimental setup is divided in two parts. In the first part we present the
results obtained from controlled artificial datasets that should give an indication
whether the method is performing as expected. The second part shows results of
the APRIORI-LR algorithm [7] run on datasets from the KEBI Data Repository
at Philipps University of Marburg [3].

Table 3 compares the intervals discretized by the MDLP-R and MDLP in
dataset Dex. As expected, since there are eight distinct rankings, the RAC ap-
proach with MDLP for classification will see eight distinct classes and break the
dataset into eight intervals. MDLP-R, however, can identify the similarities of
rankings, and only breaks the dataset into two intervals.

Table 4 gives a description of the benchmark datasets from KEBI Data
Repository at Philipps University of Marburg [3].



Table 3. Discretization results using the MDLP and MDLP-R methods

Partitions
TID Att π λ MDLP-R MDLP

1 0.1 (1,2,4,3,5) a 1 1
2 0.2 (1,2,3,4,5) b 1 2
3 0.3 (2,1,3,4,5) c 1 3
4 0.4 (1,3,2,4,5) d 1 4
5 0.5 (1,2,3,5,4) e 1 5
6 0.6 (5,4,3,1,2) f 2 6
7 0.7 (4,5,3,2,1) g 2 7
8 0.8 (5,3,4,2,1) h 2 8

Table 4. Summary of the datasets

Datasets type #examples #labels #attributes

autorship A 841 4 70
bodyfat B 252 7 7
calhousing B 20640 4 4
cpu-small B 8192 5 6
elevators B 16599 9 9
fried B 40769 5 9
glass A 214 6 9
housing B 506 6 6
iris A 150 3 4
segment A 2310 7 18
stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13
wisconsin B 194 16 16

5.1 Results on artificial datasets

Results obtained with artificial datasets can give more insight about how the
discretization method performs. The synthetic datasets presented in this sec-
tion are variations of a simple one which has only two initial rankings π1 =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and π2 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). To make it as simple
as possible, it has only one independent variable which varies from 1 to 100. The
first 60 instances are variations of π1 and the remaining are variations of π2.

In order to test the advantages of our method in comparison with the RAC
approach, we intentionally introduced noise in the target rankings, by performing
several swaps. Each swap is an inversion of two consecutive ranks in every ranking
of the data. For each ranking the choice of the pairs to invert is random. Swaps
will be done repeatedly, to obtain different levels of noise.



We performed an experiment which varies the number of swaps from 0 to
100. The greater the number of consecutive swaps, the more chaotic the dataset
will be, and hence more difficult to discretize.
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Fig. 1. Accuracy of the APRIORI-LR
(expressed in terms of Kendall τ) as a
function of the number of swaps, for
MDLP (black) and MDLP-LR (blue).
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Fig. 2. Standard deviation of the ac-
curacy of APRIORI-LR (in terms of
Kendall τ) after discretization with
MDLP-R (blue) and MDLP (black).

Figure 1 compares the accuracy of APRIORI-LR with two different dis-
cretization methods, MDLP and MDLP-R. The graph, clearly indicates that
the discretization with MDLP-R (blue line) leads to better results for APRIORI-
LR, than with MDLP after a RAC transformation . While for the first cases the
difference is not so evident, as the noise increases, MDLP-R gives a greater
contribution.

However, if we analyze Figure 2 there is extra information in favor of MDLP-
R. The standard deviation of the 10 runs of the 10-fold cross-validation is zero
in the presence of small amounts of noise (until approximately 10 swaps). This
means that, in a scenario with reasonable noise in rankings, if one decides to use
MDLP-R there are more chances to get the best result than with MDLP.

One great advantage of our method in this experiment can be seen in Fig-
ure 3. In particular, for any number of swaps until 20, our method only makes
one partition which means that the split point choice is also invariant to a rea-
sonable amount of noise. This will result in a small number of rules generated by
APRIORI-LR as supported by the graph in Figure 4. In other words, MDLP-R
makes APRIORI-LR much more efficient because it only needs to create approx-
imately 1/10 of the rules to obtain the same accuracy.

In Figure 5 we can see the percentage of instances from the test set that were
not ranked with the default rule. Since the minimum confidence was set to 50%



0 20 40 60 80 100

10
20

30
40

#Swaps

#P
ar

tit
io

ns

Fig. 3. Comparison of the average number of partitions generated by MDLP-R (blue)
and MDLP (black)

from this graph we can conclude that ARIORI-LR with MDLP is decreasing
the number of rules with confidence equal or higher than 50%. Thus, MDLP-R
creates more meaningful intervals which lead to higher confidence LRAR.

Additionally, in Figure 3 it is clear that, from a certain point, MDLP is no
longer able to make the distinction of the target attributes and so the average
number of partitions stays constant. On the other hand, the number of partitions
by MDLP-R increases as the noise increases too, which is an indicator that our
method is able to perform discretization even in complex situations.

5.2 Results on benchmark datasets

The evaluation measure is Kendall’s τ and the performance of the method was
estimated using ten-fold cross-validation. For the generation of Label Ranking
Association Rules (LR-AR) we used CAREN [2].

The similarity parameters used for the experiments are the same as used in
[7]. The minimum support (minsup) was set to 0.1%. However, in some datasets,
namely those with a larger number of attributes, frequent rule generation can
be a very time consuming task. In this case, minsup was set to a larger value,
1% or higher.

When the algorithm cannot find at least one LRAR to rank a new instance,
a default ranking is used. Since the usage of the default rule is only used as a last
resourt, the minimum confidence (minconf ) was adjusted with the same method
used in [7] for parameter tunning. The latter aims to increase the percentage of
test examples ranked without recourse to the default rule. This percentage is
shown in column M in Table 5.

Table 5 shows that both methods obtain similar results in benchmark datasets.
As we observed in the results from artificial datasets, the number of rules
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Fig. 5. Comparison of the percentage of instances from the test set that were not
ranked with the default rule. MDLP-R (blue) MDLP (black)

generated after a MDLP-R discretization is higher than with MDLP in more
noisy/complex datasets. This is due to a higher number of partitions. The same
phenomenon is also clear in Table 5 where the number of rules is generally higher
with a MDLP-R discretization.

A baseline method uses the default LRAR, which is a rule with the average
ranking, and the accuracy is presented in column τbaseline as show in Table 5



Table 5. Results obtained with MDLP discretization and with MDLP-R discretization
on bechmark datasets

MDLP MDLP-Ranking
τ τbaseline minsup minconf #rules M τ τbaseline minsup minconf #rules M

authorship .666 .568 15 90 14975 100% .691 -568 1.5 100 6010 100%
bodyfat .063 -.063 0.1 70 17135 100% .066 -.063 0.1 65 23415 100%
calhousing .329 .048 0.1 35 488 100% .304 .048 0.1 30 1315 100%
cpu-small .418 .234 0.1 35 326 100% .458 .234 0.1 40 3888 100%
elevators .648 .288 0.1 60 291 98% .670 .288 0.1 60 5681 98%
fried .802 -.002 0.1 55 8257 97% .735 -.002 0.1 100 10445 100%
glass .817 .684 0.1 80 168 100% .860 .684 0.1 100 1686 100%
housing .779 .053 0.1 65 420 100% .809 .072 0.1 70 1284 100%
iris .962 .089 0.1 85 36 100% .934 .089 0.1 80 41 100%
segment .898 .371 1 85 5110 100% .890 .371 1 80 2888 100%
stock .894 .072 0.1 80 1197 100% .890 .072 0.1 80 2980 100%
vehicle .847 .179 0.1 90 35085 100% .835 .179 0.1 100 140051 100%
vowel .802 .195 0.1 100 7593 100% .632 .195 0.1 100 15606 100%
wine .937 .329 0.1 100 1192 100% .877 .329 0.1 100 3666 100%
wisconsin .321 -.031 0.1 100 18223 100% .271 -.031 0.1 100 16799 100%

6 Conclusions

In his paper we present a simple adaptation of the supervised discretization
method, MDLP, for LR. This work was motivated by the lack of supervised
discretization methods to deal with rankings in the target variable. The results
clearly show that this is a viable LR method.

Our method clearly outperforms MDLP in the experiments with artificial
data. In this work we empirically show that, in simple scenarios, MDLP-R deals
with noisy ranking data accordingly to expected. Hence the latter is more reli-
able, in this kind of situation, than MDLP.

In Section 5.1 there are two sides of the new MDLP-R. In the presence of
very simple LR problems (#swaps ≤ 20), it has less partitions and APRIORI-
LR generates fewer rules than with MDLP. On the other hand, in more complex
situations (#swaps > 20) it has more partitions than MDLP and, consequently,
APRIORI-LR creates more rules. The latter, in our opinion, cannot be seen as a
disadvantage. The fact that there are more partitions being made means that the
method is still able to identify similar groups of rankings even in very complex
cases.

We believe that the measure of entropy for rankings proposed here, despite its
heuristic nature, makes sense and its useful in the LR field. This new measure and
MDLP-R bring new possibilities for processing ranking data and can motivate
the creation of new methods for LR learning that cannot deal with continuous
data. Furthermore, even though it was developed in the context of the LR task,
it can be also applied to other fields such as regression since it is based on a
distance measure such as Kendall τ .

This work uncovered several possibilities that could be better studied in
order to improve the discretization in the LR field. They include: the choice of
parameters in the stopping criterion; the usage of other entropy measures for
rankings.

We also believe that it is essential to test the methods on real LR prob-
lems like metalearnig or predicting the rankings of financial analysts [1]. The
KEBI datasets are adapted from UCI classification problems. In terms of real



world applications, these can be adapted to rank analysts, based on their past
performance and also preferences of radios, based on user’s preferences.
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