Skip to main content

Modular Bialgebraic Semantics and Algebraic Laws

  • Conference paper
Programming Languages (SBLP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8129))

Included in the following conference series:

  • 454 Accesses

Abstract

The ability to independently describe operational rules is indispensable for a modular description of programming languages. This paper introduces a format for open-ended rules and proves that conservatively adding new rules results in well-behaved translations between the models of the operational semantics. Silent transitions in our operational model are truly unobservable, which enables one to prove the validity of algebraic laws between programs. We also show that algebraic laws are preserved by extensions of the language and that they are substitutive. The work presented in this paper is developed within the framework of bialgebraic semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier (1999)

    Google Scholar 

  2. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws. In: Proceedings of CALCO 2013. LNCS, Springer (to appear, 2013)

    Google Scholar 

  3. Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and values. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 97–112. Springer, Heidelberg (2013)

    Google Scholar 

  4. De Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comp. Sci. 37, 245–267 (1985)

    Article  MATH  Google Scholar 

  5. Jacobs, B.: Introduction to coalgebra: Towards mathematics of states and observations. in Preparation, version 2.0 (2012), http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

  6. Jaskelioff, M., Ghani, N., Hutton, G.: Modularity and implementation of mathematical operational semantics. Elec. Notes in Theor. Comp. Sci. 229(5), 75–95 (2011)

    Article  MathSciNet  Google Scholar 

  7. Klin, B.: Adding recursive constructs to bialgebraic semantics. J. of Logic and Alg. Prog. 60, 259–286 (2004)

    Article  MathSciNet  Google Scholar 

  8. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor. Comp. Sci. 412(38), 5043–5069 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads. Elec. Notes in Theor. Comp. Sci. 33, 230–260 (2000)

    Article  MathSciNet  Google Scholar 

  10. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics. Theor. Comp. Sci. 327(1-2), 135–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Madlener, K., Smetsers, S.: GSOS formalized in Coq. In: Proceedings of TASE 2013, pp. 199–206. IEEE (2013)

    Google Scholar 

  12. Madlener, K., Smetsers, S., van Eekelen, M.: Modular bialgebraic semantics and algebraic laws. Technical Report ICIS–R13008, Radboud University Nijmegen (July 2013)

    Google Scholar 

  13. Mosses, P.D.: Modular structural operational semantics. J. of Logic and Alg. Prog. 60, 195–228 (2004)

    Article  MathSciNet  Google Scholar 

  14. Mosses, P.D.: Component-based semantics. In: Proceedings of SAVCBS 2009, pp. 3–10. ACM (2009)

    Google Scholar 

  15. Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under operational extensions. In: Fröschle, S., Valencia, F.D. (eds.) Proceedings of EXPRESS 2010, pp. 106–120. EPTCS (2010)

    Google Scholar 

  16. Rensink, A.: Bisimilarity of open terms. Inf. and Comp. 156(1), 345–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sudkamp, T.A., Cotterman, A.: Languages and machines: An introduction to the theory of computer science, 3rd edn. Addison-Wesley (2006)

    Google Scholar 

  18. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. of LICS 1997, pp. 280–291. IEEE (1997)

    Google Scholar 

  19. Watanabe, H.: Well-behaved translations between structural operational semantics. Elec. Notes in Theor. Comp. Sci. 65(1), 337–357 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madlener, K., Smetsers, S., van Eekelen, M. (2013). Modular Bialgebraic Semantics and Algebraic Laws. In: Du Bois, A.R., Trinder, P. (eds) Programming Languages. SBLP 2013. Lecture Notes in Computer Science, vol 8129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40922-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40922-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40921-9

  • Online ISBN: 978-3-642-40922-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics