Abstract
The ability to independently describe operational rules is indispensable for a modular description of programming languages. This paper introduces a format for open-ended rules and proves that conservatively adding new rules results in well-behaved translations between the models of the operational semantics. Silent transitions in our operational model are truly unobservable, which enables one to prove the validity of algebraic laws between programs. We also show that algebraic laws are preserved by extensions of the language and that they are substitutive. The work presented in this paper is developed within the framework of bialgebraic semantics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier (1999)
Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws. In: Proceedings of CALCO 2013. LNCS, Springer (to appear, 2013)
Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and values. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 97–112. Springer, Heidelberg (2013)
De Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comp. Sci. 37, 245–267 (1985)
Jacobs, B.: Introduction to coalgebra: Towards mathematics of states and observations. in Preparation, version 2.0 (2012), http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
Jaskelioff, M., Ghani, N., Hutton, G.: Modularity and implementation of mathematical operational semantics. Elec. Notes in Theor. Comp. Sci. 229(5), 75–95 (2011)
Klin, B.: Adding recursive constructs to bialgebraic semantics. J. of Logic and Alg. Prog. 60, 259–286 (2004)
Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor. Comp. Sci. 412(38), 5043–5069 (2011)
Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads. Elec. Notes in Theor. Comp. Sci. 33, 230–260 (2000)
Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics. Theor. Comp. Sci. 327(1-2), 135–154 (2004)
Madlener, K., Smetsers, S.: GSOS formalized in Coq. In: Proceedings of TASE 2013, pp. 199–206. IEEE (2013)
Madlener, K., Smetsers, S., van Eekelen, M.: Modular bialgebraic semantics and algebraic laws. Technical Report ICIS–R13008, Radboud University Nijmegen (July 2013)
Mosses, P.D.: Modular structural operational semantics. J. of Logic and Alg. Prog. 60, 195–228 (2004)
Mosses, P.D.: Component-based semantics. In: Proceedings of SAVCBS 2009, pp. 3–10. ACM (2009)
Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under operational extensions. In: Fröschle, S., Valencia, F.D. (eds.) Proceedings of EXPRESS 2010, pp. 106–120. EPTCS (2010)
Rensink, A.: Bisimilarity of open terms. Inf. and Comp. 156(1), 345–385 (2000)
Sudkamp, T.A., Cotterman, A.: Languages and machines: An introduction to the theory of computer science, 3rd edn. Addison-Wesley (2006)
Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. of LICS 1997, pp. 280–291. IEEE (1997)
Watanabe, H.: Well-behaved translations between structural operational semantics. Elec. Notes in Theor. Comp. Sci. 65(1), 337–357 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Madlener, K., Smetsers, S., van Eekelen, M. (2013). Modular Bialgebraic Semantics and Algebraic Laws. In: Du Bois, A.R., Trinder, P. (eds) Programming Languages. SBLP 2013. Lecture Notes in Computer Science, vol 8129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40922-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-40922-6_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40921-9
Online ISBN: 978-3-642-40922-6
eBook Packages: Computer ScienceComputer Science (R0)