Skip to main content

Pattern-Database Heuristics for Partially Observable Nondeterministic Planning

  • Conference paper
KI 2013: Advances in Artificial Intelligence (KI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8077))

Included in the following conference series:

  • 1518 Accesses

Abstract

Heuristic search is the dominant approach to classical planning. However, many realistic problems violate classical assumptions such as determinism of action outcomes or full observability. In this paper, we investigate how – and how successfully – a particular classical technique, namely informed search using an abstraction heuristic, can be transferred to nondeterministic planning under partial observability. Specifically, we explore pattern-database heuristics with automatically generated patterns in the context of informed progression search for strong cyclic planning under partial observability. To that end, we discuss projections and how belief states can be heuristically assessed either directly or by going back to the contained world states, and empirically evaluate the resulting heuristics internally and compared to a delete-relaxation and a blind approach. From our experiments we can conclude that in terms of guidance, it is preferable to represent both nondeterminism and partial observability in the abstraction (instead of relaxing them), and that the resulting abstraction heuristics significantly outperform both blind search and a delete-relaxation approach where nondeterminism and partial observability are also relaxed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bercher, P., Mattmüller, R.: A planning graph heuristic for forward-chaining adversarial planning. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 921–922 (2008)

    Google Scholar 

  2. Bercher, P., Mattmüller, R.: Solving non-deterministic planning problems with pattern database heuristics. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 57–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  4. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. Journal of Artificial Intelligence Research 26, 35–99 (2006)

    Article  MATH  Google Scholar 

  5. Bylander, T.: The computational complexity of propositional strips planning. Artificial Intelligence 69(1-2), 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence 147(1-2), 35–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: McCalla, G.I. (ed.) Canadian AI 1996. LNCS, vol. 1081, pp. 402–416. Springer, Heidelberg (1996)

    Google Scholar 

  8. Fu, J., Ng, V., Bastani, F.B., Yen, I.L.: Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems. In: Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1949–1954 (2011)

    Google Scholar 

  9. Hansen, E.A., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence 129(1-2), 35–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent construction of pattern database heuristics for cost-optimal planning. In: Proc. 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1007–1012 (2007)

    Google Scholar 

  11. Helmert, M., Röger, G., Seipp, J., Karpas, E., Hoffmann, J., Keyder, E., Nissim, R., Richter, S., Westphal, M.: Fast downward stone soup (planner abstract). In: Seventh International Planning Competition (IPC 2011), Deterministic Part, pp. 38–45 (2011)

    Google Scholar 

  12. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  13. Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning problems via translation into a general game. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 1–8. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kuter, U., Nau, D.S., Reisner, E., Goldman, R.P.: Using classical planners to solve nondeterministic planning problems. In: Proc. 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 190–197 (2008)

    Google Scholar 

  15. Littman, M.L.: Probabilistic propositional planning: Representations and complexity. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 748–754. MIT Press (1997)

    Google Scholar 

  16. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics for fully observable nondeterministic planning. In: Proc. 20th International Conference on Automated Planning and Scheduling (ICAPS 2010), pp. 105–112 (2010)

    Google Scholar 

  17. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84, 127–150 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Richter, S., Westphal, M., Helmert, M.: Lama 2008 and 2011 (planner abstract). In: Seventh International Planning Competition (IPC 2011), Deterministic Part, pp. 50–54 (2011)

    Google Scholar 

  19. Rintanen, J.: Complexity of planning with partial observability. In: Proc. 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 345–354 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortlieb, M., Mattmüller, R. (2013). Pattern-Database Heuristics for Partially Observable Nondeterministic Planning. In: Timm, I.J., Thimm, M. (eds) KI 2013: Advances in Artificial Intelligence. KI 2013. Lecture Notes in Computer Science(), vol 8077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40942-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40942-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40941-7

  • Online ISBN: 978-3-642-40942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics