Skip to main content

Classification of Arrhythmia Types Using Cartesian Genetic Programming Evolved Artificial Neural Networks

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Abstract

Cartesian Genetic programming Evolved Artificial Neural Network (CGPANN) is explored for classification of different types of arrhythmia and presented in this paper. Electrocardiography (ECG) signal is preprocessed to acquire important parameters and then presented to the classifier. The parameters are calculated from the location and amplitudes of ECG fiducial points, determined with a new algorithm inspired by Pan-Tompkinsā€™s algorithm [14]. The classification results are satisfactory and better than contemporary methods introduced in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmad, A.M., Khan, G.M., Mahmud, S.A., Miller, J.F.: Breast cancer detection using cartesian genetic programming evolved artificial neural networks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 1031ā€“1038. ACM, New York (2012)

    Chapter  Google Scholar 

  2. Buk, Z., KoutnĆ­k, J., Å norek, M.: NEAT in hyperNEAT substituted with genetic programming. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 243ā€“252. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Dogan, B., Korurek, M.: Performance evaluation of radial basis function neural network on ecg beat classification. In: 14th National Biomedical Engineering Meeting, BIYOMUT 200, pp. 1ā€“4. IEEE (2009)

    Google Scholar 

  4. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937ā€“965 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Gothwal, H., Kedawat, S., Kumar, R.: Cardiac arrhythmias detection in an ecg beat signal using fast fourier transform and artificial neural network. Journal of Biomedical Science and Engineering 4(4), 289ā€“296 (2011)

    Article  Google Scholar 

  6. Jokić, S., Krčo, S., Delić, V., Sakacč, D., Lukić, Z., Turukalo, T.: An efficient approach for heartbeat classification. Computers in Cardiology, 991ā€“994 (2010)

    Google Scholar 

  7. Khan, G.M., Khan, S., Ullah, F.: Short-term daily peak load forecasting using fast learning neural network. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 843ā€“848. IEEE (2011)

    Google Scholar 

  8. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of cartesian genetic programs for development of learning neural architecture. Evolutionary Computation 19(3), 469ā€“523 (2011)

    Article  Google Scholar 

  9. Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using cartesian genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1ā€“8 (2010)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Subprograms. MIT Press (1994)

    Google Scholar 

  11. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121ā€“132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Mohammadzadeh-Asl, B., Setarehdan, S.: Neural network based arrhythmia classification using heart rate variability signal. In: Proceedings of the EUSIPCO (2006)

    Google Scholar 

  13. Moriarty, D.: Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. PhD thesis, University of Texas at Austin (1997)

    Google Scholar 

  14. Pan, J., Tompkins, W.: A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering (3), 230ā€“236 (1985)

    Google Scholar 

  15. Schmidhuber, J., Wierstra, D., Gomez, F.: Evolino: Hybrid neuroevolution/optimal linear search for sequence prediction. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 853ā€“858. Professional Book Center (2005)

    Google Scholar 

  16. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Transactions on Evolutionary Computation 9, 653ā€“668 (2005)

    Article  Google Scholar 

  17. Stanley, K.O., Dā€™Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185ā€“212 (2009)

    Article  Google Scholar 

  18. Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting topologies. Evolutionary Computation 10(2), 99ā€“127 (2002)

    Article  Google Scholar 

  19. Tavassoli, M., Ebadzadeh, M., Malek, H.: Classification of cardiac arrhythmia with respect to ecg and hrv signal by genetic programming

    Google Scholar 

  20. Valenza, G., LanatĆ , A., Ferro, M., Scilingo, E.: Real-time discrimination of multiple cardiac arrhythmias for wearable systems based on neural networks. In: Computers in Cardiology, pp. 1053ā€“1056. IEEE (2008)

    Google Scholar 

  21. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423ā€“1447 (1999)

    Article  Google Scholar 

  22. Zhang, L., Peng, H., Yu, C.: An approach for ecg classification based on wavelet feature extraction and decision tree. In: 2010 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1ā€“4. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A. (2013). Classification of Arrhythmia Types Using Cartesian Genetic Programming Evolved Artificial Neural Networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41013-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41012-3

  • Online ISBN: 978-3-642-41013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics