Abstract
Cartesian Genetic programming Evolved Artificial Neural Network (CGPANN) is explored for classification of different types of arrhythmia and presented in this paper. Electrocardiography (ECG) signal is preprocessed to acquire important parameters and then presented to the classifier. The parameters are calculated from the location and amplitudes of ECG fiducial points, determined with a new algorithm inspired by Pan-Tompkinsās algorithm [14]. The classification results are satisfactory and better than contemporary methods introduced in the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

References
Ahmad, A.M., Khan, G.M., Mahmud, S.A., Miller, J.F.: Breast cancer detection using cartesian genetic programming evolved artificial neural networks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 1031ā1038. ACM, New York (2012)
Buk, Z., KoutnĆk, J., Å norek, M.: NEAT in hyperNEAT substituted with genetic programming. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 243ā252. Springer, Heidelberg (2009)
Dogan, B., Korurek, M.: Performance evaluation of radial basis function neural network on ecg beat classification. In: 14th National Biomedical Engineering Meeting, BIYOMUT 200, pp. 1ā4. IEEE (2009)
Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937ā965 (2008)
Gothwal, H., Kedawat, S., Kumar, R.: Cardiac arrhythmias detection in an ecg beat signal using fast fourier transform and artificial neural network. Journal of Biomedical Science and Engineering 4(4), 289ā296 (2011)
JokiÄ, S., KrÄo, S., DeliÄ, V., SakacÄ, D., LukiÄ, Z., Turukalo, T.: An efficient approach for heartbeat classification. Computers in Cardiology, 991ā994 (2010)
Khan, G.M., Khan, S., Ullah, F.: Short-term daily peak load forecasting using fast learning neural network. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 843ā848. IEEE (2011)
Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of cartesian genetic programs for development of learning neural architecture. Evolutionary Computation 19(3), 469ā523 (2011)
Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using cartesian genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1ā8 (2010)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Subprograms. MIT Press (1994)
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121ā132. Springer, Heidelberg (2000)
Mohammadzadeh-Asl, B., Setarehdan, S.: Neural network based arrhythmia classification using heart rate variability signal. In: Proceedings of the EUSIPCO (2006)
Moriarty, D.: Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. PhD thesis, University of Texas at Austin (1997)
Pan, J., Tompkins, W.: A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering (3), 230ā236 (1985)
Schmidhuber, J., Wierstra, D., Gomez, F.: Evolino: Hybrid neuroevolution/optimal linear search for sequence prediction. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 853ā858. Professional Book Center (2005)
Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Transactions on Evolutionary Computation 9, 653ā668 (2005)
Stanley, K.O., DāAmbrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185ā212 (2009)
Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting topologies. Evolutionary Computation 10(2), 99ā127 (2002)
Tavassoli, M., Ebadzadeh, M., Malek, H.: Classification of cardiac arrhythmia with respect to ecg and hrv signal by genetic programming
Valenza, G., LanatĆ , A., Ferro, M., Scilingo, E.: Real-time discrimination of multiple cardiac arrhythmias for wearable systems based on neural networks. In: Computers in Cardiology, pp. 1053ā1056. IEEE (2008)
Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423ā1447 (1999)
Zhang, L., Peng, H., Yu, C.: An approach for ecg classification based on wavelet feature extraction and decision tree. In: 2010 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1ā4. IEEE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A. (2013). Classification of Arrhythmia Types Using Cartesian Genetic Programming Evolved Artificial Neural Networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-41013-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41012-3
Online ISBN: 978-3-642-41013-0
eBook Packages: Computer ScienceComputer Science (R0)