Abstract
Pine is used primarily as a source of raw materials for the industries of lumber and laminated plates, resin, pulp and paper. Pine may be affected, from the nursery to adults, in plantations by pathogens such as fungi and/ or pests. The aim of this work was to recognize patterns in images obtained from a thermal plants camera in pine. An Unmanned Aerial Vehicle with a thermal camera embedded was used to take video images of pine trees. The video was segmented in pictures and all the pictures were standardized to the same size 240 x 350px. The images were segmented and a two-layer neural network feed-forward and the Scaled Conjugate Gradient (SCG) algorithm were used. The results proved to be satisfactory, with most errors near zero.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andreiv, J.: Danos causados por roedores em povoamentos de pinus e técnicas de redução de danos. Dissertação de mestrado. Universidade Federal do Paraná, 74 p. (2002), http://dspace.c3sl.ufpr.br/dspace/bitstream/handle/1884/25950/D%20-%20ANDREIV,%20JUARES.pdf?sequence=1
Auer, C.G., Gricoletti Jr., A., Santos, A.F.: Doenças de pinus: identificação e controle. Embrapa Florestas, Colombo (2001), http://www.infoteca.cnptia.embrapa.br/bitstream/doc/289928/1/circtec48.pdf
Bernardi, A.C.: Sensoriamento remoto no termal e infravermelho próximo no estudo de depósitos de turfa no vale do rio Paraíba do Sul. Dissertação, Instituto Nacional de Pesquisas Espaciais, 122 p. (1986)
Berni, J.A.J., Zarco-Tejada, P.J., Suarez, L., Fereres, E.: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEE Transactions on Geoscience and Remote Sensing 47(3), 722–738 (2009)
Biondo, L.N., Pacheco, M.A.C., Vellasco, M.M.B.R., Passos, E.P.L., Chiganer, L.: Sistema Híbrido de Apoio à Decisão para Detecção e Diagnóstico de Falhas em Redes Elétricas. In: Anais do III Simpósio Brasileiro de Redes Neurais, Recife, pp. 197–204 (1996)
Catena, A., Catena, G.: Overview of thermal imaging for tree assessment. Arboricultural Journal 30, 259–270 (2008)
Catena, A., Catena, G.: Use of a hand-held thermal imager to detect cavities and rotten tissue in trees. Geomatics, earth observation and the infornation society, pp. 260–267 (2001)
Epiphanio, J.C.N.: Sensoriamento remoto termal para avaliação de produtividade e deficiência hídrica de milho na região dos cerrados, Dissertação, 123 p. Instituto Nacional de pesquisas espaciais, São José do Campo/SP (1983)
Kondo, N., Ahmad, U., Monta, M., Murase, H.: Machine vision based quality evaluation of Iokan orange fruit using neural networks. Computers and Electronics in Agriculture 29 (2000)
Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(4), 525–533 (1993)
Netrino. Embedded Systems Glossary (2011), http://www.netrino.com/Embedded-Systems/Glossary-E
Oliveira, M.A.A.: Desenvolvimento de um medidor de vazão termal inteligente. Dissertação. Universidade do Estado do Rio de Janeiro, 113 p. (2010)
Osorio, F., Bittencourt, J.R.: Sistemas inteligentes baseados em Redes Neurais Artificiais aplicados ao processamento de imagens. In: I Workshop de Inteligência Artificial, Universidade de Santa Cruz do Sul, p. 30 (2000)
Rodigheri, H.R., Lede, E.T.: Avaliação ambiental, econômica e social dos danos causados pelos pulgões-gigantes-do-pinus Cinara spp. em plantios de Pinus no Sul do Brasil. Embrapa Florestas, Comunicado Técnico n. 110, Colombo (2004), http://www.cnpf.embrapa.br/publica/comuntec/edicoes/com_tec110.pdf
Simões, A.S.: Segmentação de imagens por classificação de cores: uma abordagem neural. Dissertação de mestrado em engenharia, Escola Politécnica da Universidade de São Paulo, São Paulo, SP (2000)
Simões, A.S., Reali Costa, A.H.: Using neural color classification in robotic soccer domain. In: Barros, L.N., Cesar Jr., R.M., Cozman, F.G., Reali Costa, A.H. (eds.) Proceedings of International Joint Conference IBERAMIA-SBIA- Workshop Meeting on Multi-Agent Collaborative and Adversarial Perception, Planning, Execution, and Learning, Atibaia, SP, pp. 208–213 (2000)
Vahid, F., Givargis, T.: Embedded System Design: A Unified Hardware/Software Introduction. John Wiley & Sons, United States of America (2002)
Wilcken, C.F., Orlato, C., Ottati, A.L.T.: Ocorrência de Migdolus fryanus (Coleoptera: Cerambycidae) em plantios de Pinus caribaea var. hondurensis, Revista Árvore, Viçosa 29(1), 171–173 (2005)
Wolf, W.: Computers as Components: Principles of Embedded Computing System Design. Morgan Kaufmann Publishers, Burlington (2008)
Yu, Y., et al.: The Practice and exploration on the education mode for embedded systems major. In: 2010 International Conference on Education and Management Technology, pp. 367–370 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bentivoglio Colturato, A. et al. (2013). Pattern Recognition in Thermal Images of Plants Pine Using Artificial Neural Networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-41013-0_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41012-3
Online ISBN: 978-3-642-41013-0
eBook Packages: Computer ScienceComputer Science (R0)