Abstract
In the electrical prospecting inverse problem, the sought-for distribution of electrical conductivity in Earth stratum is described by dividing the studied section into blocks arranged in layers, with determination of electrical conductivity in the center of each block. This inverse problem can be solved separately for each block, or simultaneously for a group of blocks. In this study, the dependence of solution error on the number of blocks for simultaneous solution of the problem with a single neural network, and on the method of their choice, was investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berdichevsky, M.N., Dmitriev, V.I.: Models and Methods of Magnetotellurics. Springer (2008)
Gerdova, I.V., Churina, I.V., Dolenko, S.A., Dolenko, T.A., Fadeev, V.V., Persiantsev, I.G.: New Opportunities in Solution of Inverse Problems in Laser Spectroscopy Due to Application of Artificial Neural Networks. In: Proc. SPIE, vol. 4749, pp. 157–166 (2002)
Shimelevich, M.I., Obornev, E.A., Gavryushov, S.: Rapid Neuronet Inversion of 2D Magnetotelluric Data for Monitoring of Geoelectrical Section Parameters. Annals of Geophysics 50(1), 105–109 (2007)
Xu, H.-L., Wu, X.-P.: 2-D Resistivity Inversion Using the Neural Network Method. Chinese J. of Geophysics 29(2), 507–514 (2006)
Li, M., Verma, B., Fan, X., Tickle, K.: RBF neural networks for solving the inverse problem of backscattering spectra. Neural Computing & Applications 17(4), 391–397 (2008)
Yang, H., Xu, M.: Solving inverse bimodular problems via artificial neural network. Inverse Problems in Science and Engineering 17(8), 999–1017 (2009)
Devilee, R.J.R., Curtis, A., Roy-Chowdhury, K.: An efficient, probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness. J. Geophys. Research 104(B12), 28841–28857 (1999)
Raiche, A.: A pattern recognition approach to geophysical inversion using neural nets. Geophysics J. Int. 105(3), 629–648 (1991)
Poulton, M., Sternberg, B., Glass, C.: Neural network pattern recognition of subsurface EM images. Journal of Applied Geophysics 29(1), 1534–1544 (1992)
Hidalgo, H.: Neural Network Approximation of an Inverse Functional. In: IEEE World Congress on Computational Intelligence, p. 5 (1994)
Poulton, M.M. (ed.): Computational Neural Networks for Geophysical Data Processing. Elsevier Science Ltd., Kidlington (2001)
Sandham, W., Leggett, M. (eds.): Geophysical Applications of Artificial Neural Networks and Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (2003)
Spichak, V., Fukuoka, K., Kabayashi, T., Mogi, T., Popova, I., Shima, H.: ANN reconstruction of geoelectrical parameters of the Mionou fault zone by scalar CSAMT data. J. App. Geophys. 49, 75–90 (2002)
Dolenko, S., Guzhva, A., Obornev, E., Persiantsev, I., Shimelevich, M.: Comparison of Adaptive Algorithms for Significant Feature Selection in Neural Network Based Solution of the Inverse Problem of Electrical Prospecting. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 397–405. Springer, Heidelberg (2009)
Guzhva, A., Dolenko, S., Persiantsev, I.: Multifold Acceleration of Neural Network Computations Using GPU. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 373–380. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dolenko, S., Isaev, I., Obornev, E., Persiantsev, I., Shimelevich, M. (2013). Study of Influence of Parameter Grouping on the Error of Neural Network Solution of the Inverse Problem of Electrical Prospecting. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-41013-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41012-3
Online ISBN: 978-3-642-41013-0
eBook Packages: Computer ScienceComputer Science (R0)