Skip to main content

Sleep Spindle Detection in EEG Signals Combining HMMs and SVMs

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Abstract

In this paper we present a combined SVM-HMM sleep spindle detection scheme. The proposed scheme takes advantage of the information provided from each of the two prediction models in decision level, in order to provide refined and more accurate spindle detection results. The experimental results showed that the proposed combined scheme achieved an overall detection performance of 90.28%, increasing the best-performing SVM-based model by 2% in terms of absolute performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sanei, S., Chambers, J.A.: EEG Signal Processing. John Wiley & Sons, Ltd. (2007)

    Google Scholar 

  2. De Gennaro, L., Ferrara, M.: Sleep spindles: an overview. Sleep Medicine Reviews 7(5), 423–440 (2003)

    Article  Google Scholar 

  3. D. Gorur, U. Halici, H. Aydin, G. Ongun, F. Ozgen, K. Leblebicioglu, "Sleep Spindles Detection Using Autoregressive Modeling", In Proc. of ICANN/ICONIP 2003.

    Google Scholar 

  4. Huupponen, E., Gomez-Herrero, G., Saastamoinen, A., Varri, A., Hasan, J., Himanen, S.-L.: Development and comparison of four sleep spindle detection methods. Artificial Intelligence in Medicine 40, 157–170 (2007)

    Article  Google Scholar 

  5. De Gennaro, L., Ferrara, M., Bertini, M.: Effect of slow-wave sleep deprivation on topographical distribution of spindles. Behavioral Brain Research (116), 55–59 (2000)

    Google Scholar 

  6. Ktonas, P.Y., Golemati, S., Xanthopoulos, P., Sakkalis, V., Ortigueira, M.D.: Time–frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers. Journal of Neuroscience Methods, no 1(185), 133–142 (2009)

    Article  Google Scholar 

  7. Ahmed, B., Redissi, A., Tafreshi, R.: An automatic sleep spindle detector based on wavelets and the teager energy operator. In: Proc. of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2596–2599 (2009)

    Google Scholar 

  8. Duman, F., Erogul, O., Telatar, Z., Yetkin, S.: Automatic sleep spindle detection and localization algorithm. In: Proc. of EUSIPCO 2005, pp. 2003–2006 (2005)

    Google Scholar 

  9. Devuyst, S., Dutoit, T., Didier, J.F., Meers, F., Stanus, E., Stenuit, P., Kerkhofs, M.: Automatic Sleep Spindle Detection in Patients with Sleep Disorders. In: Proc. of the 28th IEEE EMBS Annual International Conference, New York City, USA (2006)

    Google Scholar 

  10. Ventouras, E., Monoyiou, E., Ktonas, P., Paparrigopoulos, T., Dikeos, D.: Sleep Spindle Detection Using Artificial Neural Networks Trained with Filtered Time-Domain EEG: A Feasibility Study. Computer Methods and Programs in Biomedicine 78(3), 191–207 (2005)

    Article  Google Scholar 

  11. Ventouras, E., Economou, N., Kritikou, I., Tsekou, H., Paparrigopoulos, T., Ktonas, P.: Performance evaluation of an Artificial Neural Network automatic spindle detection system. In: Proc. of the Conf. IEEE Eng. Med. Biol. Soc., pp. 4328–4331 (2012)

    Google Scholar 

  12. Duman, F., Erdamar, A., Erogul, O., Telatar, Z., Yetkin, S.: Efficient sleep spindle detection algorithm with decision tree. Expert Systems with Applications 36(6), 9980–9985 (2009)

    Article  Google Scholar 

  13. Costa, J., Ortigueira, M., Batista, A., Paiva, T.: Sleep Spindles Detection: a Mixed Method using STFT and WMSD. International Journal of Bioelectromagnetism 14(4), 229–233 (2012)

    Google Scholar 

  14. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  15. Rabiner, L.R.: A tutorial on Hidden Markov Models and Selected Applications in Speech recognition. Proceedings of the IEEE 77(2) (1989)

    Google Scholar 

  16. Witten, H.I., Frank, E.: Data Mining: practical machine learning tools and techniques. Morgan Kaufmann Publishing

    Google Scholar 

  17. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.4). Cambridge University Engineering Department (2006)

    Google Scholar 

  18. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ventouras, E.M., Ktonas, P.Y., Tsekou, H., Paparrigopoulos, T., Kalatzis, I., Soldatos, C.R.: Independent Component Analysis for Source Localization of EEG Sleep Spindle Components. In: Computational Intelligence and Neuroscience, vol. 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mporas, I., Korvesis, P., Zacharaki, E.I., Megalooikonomou, V. (2013). Sleep Spindle Detection in EEG Signals Combining HMMs and SVMs. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41016-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41015-4

  • Online ISBN: 978-3-642-41016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics