Skip to main content

Medical Decision Making via Artificial Neural Networks: A Smart Phone-Embedded Application Addressing Pulmonary Diseases’ Diagnosis

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 384))

Abstract

A prototype Medical Decision Making System (MDMS) based on feed forward Artificial Neural Networks (fANNs) and its software implementation as an application of ‘smart phone’ devices, is the topic of this article. An MDMS, generally structured to cover categories of distressed body organs, is presented, focusing on the full spectrum of Pulmonary Diseases (PDs). The fANNs that compose this MDMS have been taught by using real world patients’ clinical data. The fANNS have been taught on a powerful PC and their weights ported to be used as a part of a wide range ‘smart phone’ devices’ applications software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O.: A Step towards the Development of VHDL Model for ANN based EMG Signal Classifier. In: Proc. of International Conference on Informatics, Electronics & Vision, pp. 542–547 (2012)

    Google Scholar 

  2. Al-Absi, H.R.H., Abdullah, A., Hassan, M.I., Shaban, K.B.: Hybrid Intelligent System for Disease Diagnosis Based on Artificial Neural Networks, Fuzzy Logic, and Genetic Algorithms. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S., El-Qawasmeh, E. (eds.) ICIEIS 2011, Part II. CCIS, vol. 252, pp. 128–139. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bounds, D.G., et al.: A Multi Layer Perceptron Network for the Diagnosis of Low Back Pain. In: Proc. Int. Conf. on NN, San Diego, pp. 481–489 (1988)

    Google Scholar 

  4. Chang, G., et al.: Developing Mobile Applications on the Android Platform, pp. 264–286. Springer, Berlin (2010)

    Google Scholar 

  5. Dhawan, A.P.: An Expert System for the Early Detection of Melanoma Using Knowledge-Based Image Analysis. Anal., Quant. Cyt. and Hist. (1988)

    Google Scholar 

  6. Distante, F., et al.: Mapping NN onto a Massively Parallel Architecture: A Defect-Tolerance Solution. In: Proc. of the IEEE, pp. 444–460 (1991)

    Google Scholar 

  7. Dongarra, J.J., et al.: The LINPACK Benchmark: Past, Present, and Future. Concurrency Computat.: Pract. Exper., 803–820 (2003)

    Google Scholar 

  8. Economou, G.-P.K., et al.: Decision Support Systems for Tele-Medicine Applications. Research Studies Press Ltd., Hertfordshire (2004)

    Google Scholar 

  9. Economou, G.-P.K., et al.: Enhanced Applications of a Tele-Medicine Decision Support Platform. WSEAS Trans. on Softw. App. 4, 707–715 (2006)

    Google Scholar 

  10. http://developer.android.com

  11. http://en.wikipedia.org/wiki/Cloud_computing

  12. http://en.wikipedia.org/wiki/Smartphone

  13. Hart, A., Wyatt, J.: Evaluating Black-Boxes as Medical Decision Aids: Issues Arising from a Study of NN. Med. Inf., 229–236 (1990)

    Google Scholar 

  14. Henson-Mack, K., et al.: Integrating Probabilistic and Rule-Based Systems for CDD. In: IEEE Proc. Southeastcon 1992, Birmingham, AL, USA, pp. 699–702 (1992)

    Google Scholar 

  15. House, W.C.: Decision Support Systems: A Data-Based, Model-Oriented, User-Development Discipline. Petrocelli Books Inc., McGraw Hill (1991)

    Google Scholar 

  16. Hush, D.R., Horne, B.G.: Progress in Supervised NN. IEEE Sig. Proc. Mag., pp. 8–39 (1993)

    Google Scholar 

  17. Lippmann, R.P.: An Introduction to Computing with NN. IEEE ASSP Mag., 4–22 (1987)

    Google Scholar 

  18. Marozas, V., Jurkonis, R., Kazla, A., Lukosevicius, M., Lukosevicius, A., Gelzinis, A., Jegelevicius, D.: Development of Teleconsultations Systems for e-Health. Transformation of Health Care with Information Technologies. IOS Press, Holland (2011)

    Google Scholar 

  19. Mulsant, B.H.: A NN as an Approach to Clinical Diagnosis. M. D. Comp., 25–36 (1990)

    Google Scholar 

  20. O’ Leary, T.J., et al.: Computer-Assisted Image Interpretation: Use of a NN to Differentiate Tubular Carcinoma from Sclerosing Adenosis. Mod. Path., 402–405 (1992)

    Google Scholar 

  21. Poli, R., et al.: An NN Expert System for Diagnosing and Treating Hypertension. IEEE Comp., 64–71 (1991)

    Google Scholar 

  22. Scalero, R.S., Tepedelenlioglu, N.: A Fast New Algorithm for Training Feedforward NN. IEEE Trans. on Sig. Proc., 202–210 (1992)

    Google Scholar 

  23. Sibai, F.N.: A Fault Tolerant Digital Artificial Neuron. IEEE Design & Test of Computers, 76–82 (1993)

    Google Scholar 

  24. Umbaugh, S.E., et al.: Applying Artificial Intelligence to the Identification of Variegated Coloring in Skin Tumors. IEEE Eng. in Med. and Biol. (1991)

    Google Scholar 

  25. Watanabe, T., et al.: A Single 1.5-V Digital Chip for a 106-synapse NN. IEEE Trans. on NN, 387–393 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Economou, GP.K., Papaioannou, V. (2013). Medical Decision Making via Artificial Neural Networks: A Smart Phone-Embedded Application Addressing Pulmonary Diseases’ Diagnosis. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41016-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41015-4

  • Online ISBN: 978-3-642-41016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics