Skip to main content

Classification Models for Alzheimer’s Disease Detection

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Abstract

This paper presents a classification fusion for Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) classification based on dataset acquired basically from an automated structural MRI image processing pipeline. The dataset includes eighty-one regional cortical volume and cortical thickness features produced by the automated pipeline, along with two demographic measurements and three manual volume measurements of the hippocampus. This high-dimensional pattern classification problem is tested in a large database that contains clinical tests from six medical centers in Europe. The assessment of the results has shown that with a careful selection of combined classifiers, subject classification in three classes (Normal Controls, patients with MCI or with AD) is fairly accurate and can be used as an assistive tool to clinical examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer’s disease. Neurology 34, 939–944 (1984)

    Article  Google Scholar 

  2. Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P.J., Scheltens, P.: Research criteria for the diagnosis of alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet. Neurol. 6, 734–746 (2007)

    Article  Google Scholar 

  3. Lehmann, A., Koenig, T., Jelic, V., Prichep, L., John, R.E., Wahlund, L.O., Dodge, Y., Dierks, T.: Application and comparison of classification algorithms for recognition of alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Meth. 161, 342–350 (2007)

    Article  Google Scholar 

  4. Chaves, R., Ramírez, J., Górriz, J.M., López, M., Salas-Gonzalez, D., Alvarez, I., Segovia, F.: SVM-based computer-aided diagnosis of the alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting. Neurosci. Lett. 461, 293–297 (2009)

    Article  Google Scholar 

  5. López, M.M., Ramírez, J., Górriz, J.M., Alvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R.: SVM-based CAD system for early detection of the alzheimer’s disease using kernel PCA and LDA. Neurosci. Lett. 464, 233–238 (2009)

    Article  Google Scholar 

  6. Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack, C.R.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. NeuroImage 39, 1186–1197 (2008)

    Article  Google Scholar 

  7. Colliot, O., Chételat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., Dubois, B., Garnero, L., Eustache, F., Lehéricy, S.: Discrimination between alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248, 194–201 (2008)

    Article  Google Scholar 

  8. Tripoliti, E.E., Fotiadis, D.I., Argyropoulou, M.: An automated supervised method for the diagnosis of alzheimer’s disease based on fMRI data using weighted voting schemes. In: Proc. of IEEE International Workshop on Imaging Systems and Techniques, pp. 340–345. IEEE, Chania (2008)

    Google Scholar 

  9. Liu, Y., Paajanen, T., Zhang, Y., Westman, E., Wahlund, L.O., Simmons, A., Tunnard, C., Sobow, T., Mecocci, P., Tsolaki, M., Vellas, B., Muehlboeck, S., Evans, A., Spenger, C., Lovestone, S., Soininen, H.: Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups - The AddNeuroMed study. Neurobiol. Aging 32, 1198–1206 (2011)

    Article  Google Scholar 

  10. Lovestone, S., Francis, P., Strandgaard, K.: Biomarkers for disease modification trials - the innovative medicines initiative and AddNeuroMed. J. Nutr. Health Aging 11, 359–361 (2007)

    Google Scholar 

  11. Jack Jr, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hil, D.L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Krueger, G., Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Im. 27, 685–691 (2008)

    Article  Google Scholar 

  12. Simmons, A., Westman, E., Muehlboeck, S., Mecocci, P., Vellas, B., Tsolaki, M., Kloszewska, I., Wahlund, L.O., Soininen, H., Lovestone, S., Evans, A., Spenger, C.: MRI measures of alzheimer’s disease and the AddNeuroMed study. Ann. NY. Acad. Sci. 1180, 47–55 (2009)

    Article  Google Scholar 

  13. Simmons, A., Westman, E., Muehlboeck, S., Mecocci, P., Vellas, B., Tsolaki, M., Kloszewska, I., Wahlund, L.O., Soininen, H., Lovestone, S., Evans, A., Spenger, C.: The AddNeuroMed framework for multi-centre MRI assessment of longitudinal changes in alzheimer’s disease: experience from the first 24 months. Int. J. Ger. Psych. 26, 75–82 (2011)

    Article  Google Scholar 

  14. Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiat. Res. 12, 189–198 (1975)

    Article  Google Scholar 

  15. Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., Martin, R.L.: A new clinical scale for the staging of dementia. Brit. J. Psychiat. 140, 566–572 (1982)

    Article  Google Scholar 

  16. Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol-Cigago 56(6), 303–308 (1999)

    Article  Google Scholar 

  17. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. of the National Academy of Sciences 97, 11050–11055 (2000)

    Article  Google Scholar 

  18. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)

    Article  Google Scholar 

  19. Fischl, B., Salat, D.H., van der Kouwe, A.J., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)

    Google Scholar 

  20. Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B.: A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004)

    Article  Google Scholar 

  21. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE T. Med. Imaging 20, 70–80 (2001)

    Article  Google Scholar 

  22. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999)

    Article  Google Scholar 

  23. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999)

    Article  Google Scholar 

  24. Hermes medical solutions (2012), http://www.hermesmedical.com (accessed March 12, 2013)

  25. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE T. Pattern Anal. 20, 226–239 (1998)

    Article  Google Scholar 

  26. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 38, 337–374 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anagnostopoulos, CN. et al. (2013). Classification Models for Alzheimer’s Disease Detection. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41016-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41016-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41015-4

  • Online ISBN: 978-3-642-41016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics