Skip to main content

Ontology-Based Semantic Annotation of Documents in the Context of Patient Identification for Clinical Trials

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2013 Conferences (OTM 2013)

Abstract

In this paper, we describe the use of ontologies in the context of a system for identifying patients that are eligible for clinical trials. The main purpose of this clinical research data warehouse (CRDW) is to support patient recruitment based on routine data from the hospital’s clinical information system (CIS). In contrast to most other systems for similar purposes, the CRDW also makes use of information present in clinical documents like admission reports, radiological findings and discharge letters. The linguistic analysis recognizes negated and coordinated phrases. It is supported by clinical domain ontologies that enable the identification of main terms and their properties, as well as semantic search with synonyms, hypernyms, and syntactic variants. The CRDW system is currently being tested at hospitals of the Charité - Universitätsmedizin Berlin and the Vivantes - Netzwerk für Gesundheit GmbH. In the paper, we provide an evaluation of the system based on real world data obtained from the daily routine work of the study assistants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodenreider, O.: The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Research 32(Database-Issue), 267–270 (2004)

    Google Scholar 

  2. Browne, P.: Jboss Drools Business Rules. From technologies to solutions. Packt Publishing, Limited (2009)

    Google Scholar 

  3. Chapman, W.W., Hilert, D., Velupillai, S., Kvist, M., Skeppsted, M., Chapman, B.E., Conway, M., Tharp, M., Mowery, D.L., Deleger, L.: Extending the negex lexicon for multiple languages. In: Proceedings of the 14th World Congress on Medical and Health Informatics, MEDINFO 2013 (2013)

    Google Scholar 

  4. Cowie, J., Wilks, Y.: Information extraction. In: Handbook of Natural Language Processing, pp. 241–260 (2000)

    Google Scholar 

  5. Cunningham, H., Tablan, V., Roberts, A., Bontcheva, K.: Getting more out of biomedical documents with gate’s full lifecycle open source text analytics

    Google Scholar 

  6. Dugas, M., Lange, M., Berdel, W., Müller-Tidow, C.: Workflow to improve patient recruitment for clinical trials within hospital information systems - a case-study. Trials 9(1), 2 (2008)

    Article  Google Scholar 

  7. Gallaire, H., Minker, J., Nicolas, J.-M.: Logic and databases: A deductive approach. ACM Comput. Surv. 16(2), 153–185 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall Series in Artificial Intelligence. Prentice Hall (May 2008)

    Google Scholar 

  9. Kifer, M.: Rule interchange format: The framework. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. Journal of the ACM 42(4), 741–843 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)

    Google Scholar 

  12. Müller, F.: A finite-state approach to shallow parsing and grammatical functions annotation of German. PhD thesis, University of Tübingen (2005)

    Google Scholar 

  13. Murphy, S.N., Mendis, M.E., Berkowitz, D.A., Kohane, I., Chueh, H.: Integration of clinical and genetic data in the i2b2 architecture. In: AMIA Annu. Symp. Proc., p. 2009 (2006)

    Google Scholar 

  14. Polleres, A.: From SPARQL to rules (and back). In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 787–796. ACM (2007)

    Google Scholar 

  15. Reeve, L.: Survey of semantic annotation platforms. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 1634–1638. ACM Press (2005)

    Google Scholar 

  16. Rogers, F.B.: Medical subject headings. Bull. Med. Libr. Assoc. 51, 114–116 (1963)

    Google Scholar 

  17. Rosse, C., Mejino, J.V.L.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Inform. 36, 478–500 (2003)

    Article  Google Scholar 

  18. Ruch, P., Gobeill, J., Lovis, C., Geissbühler, A.: Automatic medical encoding with SNOMED categories. BMC Medical Informatics and Making 8, 6 (2008)

    Article  Google Scholar 

  19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education (2003)

    Google Scholar 

  20. Scheitz, J.F., Mochmann, H.C., Witzenbichler, B., Fiebach, B., Audebert, H.J., Nolte, C.H.: J. Neurol. 25 (2012)

    Google Scholar 

  21. Scheitz, J.F., Mochmann, H.C., Nolte, C.H., Haeusler, K.G., Audebert, H.J., Heuschmann, P.U., Laufs, U., Witzenbichler, B., Schultheiss, H.P., Endres, M.: Troponin elevation in acute ischemic stroke (TRELAS) – protocol of a prospective observational trial. M. BMC Neurol. 11(98) (2011)

    Google Scholar 

  22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  23. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE TKDE 99 (2011)

    Google Scholar 

  24. Staab, S., Studer, R.: Handbook on Ontologies, 2nd edn. Springer (2009)

    Google Scholar 

  25. Szarvas, G., Farkas, R., Busa-Fekete, R.: Research paper: State-of-the-art anonymization of medical records using an iterative machine learning framework. JAMIA 14(5), 574–580 (2007)

    Google Scholar 

  26. Todorov, K., Geibel, P., Kühnberger, K.-U.: Mining concept similarities for heterogeneous ontologies. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 86–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Yu, L.: A Developers Guide the Semantic Web. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geibel, P. et al. (2013). Ontology-Based Semantic Annotation of Documents in the Context of Patient Identification for Clinical Trials. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2013 Conferences. OTM 2013. Lecture Notes in Computer Science, vol 8185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41030-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41030-7_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41029-1

  • Online ISBN: 978-3-642-41030-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics