Skip to main content

Analyzing Linked Data Quality with LiQuate

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2013 Workshops (OTM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8186))

  • 2336 Accesses

Abstract

In the last years, the number of datasets in the Linking Open Data (LOD) cloud and the applications that rely on links between these datasets to discover patterns or potential new associations, have exploded. However, because of data source heterogeneity, published data may suffer of redundancy, inconsistencies or may be incomplete; thus, results generated by linked data based applications may be imprecise or unreliable. We illustrate LiQuate (Linked Data Quality Assessment), a tool that combines Bayesian Networks and rule-based systems to analyze the quality of data and links in the LOD cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of VLDB 2007 (2007)

    Google Scholar 

  2. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: WWW (2012)

    Google Scholar 

  3. Fürber, C., Hepp, M.: Towards a vocabulary for data quality management in semantic web architectures. In: EDBT/ICDT Workshop on Linked Web Data Management (2011)

    Google Scholar 

  4. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. SIGMOD Record 30(2), 461–472 (2001)

    Article  Google Scholar 

  5. Guret, C., Groth, P., Stadler, C., Lehmann, J.: Linked data quality assessment through network analysis. In: ISWC 2011 Posters and Demos (2011)

    Google Scholar 

  6. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: Linkedct: A linked data space for clinical trials. CoRR, abs/0908.0567 (2009)

    Google Scholar 

  7. Hassanzadeh, O., Yeganeh, S.H., Miller, R.J.: Linking semistructured data on the web. In: WebDB (2011)

    Google Scholar 

  8. Jentzsch, A., Andersson, B., Hassanzadeh, O., Stephens, S., Bizer, C.: Enabling Tailored Therapeutics with Linked Data. In: Proceedings of the WWW 2009 Workshop on Linked Data on the Web (LDOW 2009) (2009)

    Google Scholar 

  9. Kimmig, A., Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: A short introduction to probabilistic soft logic. In: NIPS Workshop on Probabilistic Programming: Foundations and Applications (2012)

    Google Scholar 

  10. Langegger, A., Wöß, W.: Rdfstats - an extensible rdf statistics generator and library. In: DEXA Workshops (2009)

    Google Scholar 

  11. Memory, A., Kimmig, A., Bach, S.H., Raschid, L., Getoor, L.: Graph summarization in annotated data using probabilistic soft logic. In: URSW (2012)

    Google Scholar 

  12. Ruckhaus, E., Vidal, M.-E.: The BAY-HIST Prediction Model for RDF Documents. In: Proceedings of the 2nd ESWC Workshop on Inductive Reasoning and Machine Learning on the Semantic Web-CEUR, vol. 611, pp. 30–41 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruckhaus, E., Baldizán, O., Vidal, ME. (2013). Analyzing Linked Data Quality with LiQuate. In: Demey, Y.T., Panetto, H. (eds) On the Move to Meaningful Internet Systems: OTM 2013 Workshops. OTM 2013. Lecture Notes in Computer Science, vol 8186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41033-8_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41033-8_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41032-1

  • Online ISBN: 978-3-642-41033-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics