Skip to main content

Spatially Constrained Incoherent Motion (SCIM) Model Improves Quantitative Diffusion-Weighted MRI Analysis of Crohn’s Disease Patients

  • Conference paper
Abdominal Imaging. Computation and Clinical Applications (ABD-MICCAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8198))

Abstract

Quantitative analysis of fast and slow diffusion from abdominal Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. However, the commonly used, independent voxel-wise fitting of the signal decay model leads to imprecise parameter estimates, which has hampered their practical usage. In this work we evaluated the improvement in the precision of the fast and slow diffusion parameter estimates achieved by using a spatially-constrained Incoherent Motion (SCIM) model of DW-MRI signal decay in 5 healthy subjects and 24 Crohn’s disease patients. We found that the improvement in Coefficient of Variation (CV) of the parameter estimates achieved using the SCIM model was significantly larger compared to thus achieved by repeated acquisition and signal averaging (n=5, paired Student’s t-test, p ≤ 0.05). We also found that the SCIM model reduced the coefficient of variation of the parameter estimates of the D * and f parameter estimates in the ileum by 30% compared to the independent voxel-wise fitting of the signal decay model in the Crohn’s patients data (n=24, paired Student’s t-test, p ≤ 0.05). The SCIM model is more precise for quantitative analysis of abdominal DW-MRI signal decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Bihan, D.: Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249(3), 748–752 (2008)

    Article  MathSciNet  Google Scholar 

  2. Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2), 497–505 (1988)

    Google Scholar 

  3. Koh, D.M., Collins, D.J., Orton, M.R.: Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am. J. Roentgenol. 196(6), 1351–1361 (2011)

    Article  Google Scholar 

  4. Sigmund, E.E., Cho, G.Y., Kim, S., Finn, M., Moccaldi, M., Jensen, J.H., Sodickson, D.K., Goldberg, J.D., Formenti, S., Moy, L.: Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn. Reson. Med. 65(5), 1437–1447 (2011)

    Article  Google Scholar 

  5. Re, T.J., Lemke, A., Klauss, M., Laun, F.B., Simon, D., Grunberg, K., Delorme, S., Grenacher, L., Manfredi, R., Mucelli, R.P., Stieltjes, B.: Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation. Magn. Reson. Med. 66(5), 1327–1332 (2011)

    Article  Google Scholar 

  6. Klauss, M., Lemke, A., Grunberg, K., Simon, D., Re, T.J., Wente, M.N., Laun, F.B., Kauczor, H.U., Delorme, S., Grenacher, L., Stieltjes, B.: Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest. Radiol. 46(1), 57–63 (2011)

    Article  Google Scholar 

  7. Chandarana, H., Lee, V.S., Hecht, E., Taouli, B., Sigmund, E.E.: Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest. Radiol. 46(5), 285–291 (2011)

    Google Scholar 

  8. Gloria, C., Li, Q., Xu, L., Zhang, W.: Differentiation of diffusion coefficients to distinguish malignant and benign tumor. J. Xray Sci. Technol. 18(3), 235–249 (2010)

    Google Scholar 

  9. Lemke, A., Laun, F.B., Klauss, M., Re, T.J., Simon, D., Delorme, S., Schad, L.R., Stieltjes, B.: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest. Radiol. 44(12), 769–775 (2009)

    Article  Google Scholar 

  10. Luciani, A., Vignaud, A., Cavet, M., Nhieu, J.T., Mallat, A., Ruel, L., Laurent, A., Deux, J.F., Brugieres, P., Rahmouni, A.: Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249(3), 891–899 (2008)

    Article  Google Scholar 

  11. Patel, J., Sigmund, E.E., Rusinek, H., Oei, M., Babb, J.S., Taouli, B.: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J. Magn. Reson. Imaging 31(3), 589–600 (2010)

    Article  Google Scholar 

  12. Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Bittman, M., Mulkern, R.V., Bousvaros, A., Warfield, S.K.: Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn’s disease. J. Magn. Reson. Imaging 37(1), 156–163 (2013), http://dx.doi.org/10.1002/jmri.23781

    Article  Google Scholar 

  13. Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Voss, S.D., Ecklund, K., Mulkern, R.V., Warfield, S.K.: Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 17(3), 325–336 (2013), http://dx.doi.org/10.1016/j.media.2012.12.001

    Article  Google Scholar 

  14. Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: Reliable Assessment of Perfusivity and Diffusivity from Diffusion Imaging of the Body. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 1–9. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26(6), 754–762 (2008)

    Article  Google Scholar 

  16. Lemke, A., Stieltjes, B., Schad, L.R., Laun, F.B.: Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn. Reson. Imaging 29(6), 766–776 (2011)

    Article  Google Scholar 

  17. Yamada, I., Aung, W., Himeno, Y., Nakagawa, T., Shibuya, H.: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3), 617–623 (1999)

    Article  Google Scholar 

  18. Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Medical Physics 39, 4832 (2012)

    Article  Google Scholar 

  19. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods, 2nd edn. Springer, New York (2003)

    Book  Google Scholar 

  20. Conturo, T.E., McKinstry, R.C., Akbudak, E., Robinson, B.H.: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn. Reson. Med. 35(3), 399–412 (1996)

    Article  Google Scholar 

  21. Mulkern, R.V., Vajapeyam, S., Robertson, R.L., Caruso, P.A., Rivkin, M.J., Maier, S.E.: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain. Magn. Reson. Imaging 19(5), 659–668 (2001)

    Article  Google Scholar 

  22. Davidson, R., Flachaire, E.: The wild bootstrap, tamed at last. Journal of Econometrics 146(1), 162–169 (2008)

    Article  MathSciNet  Google Scholar 

  23. Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Warfield, S.K.: Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 74–81. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taimouri, V., Freiman, M., Afacan, O., Warfield, S.K. (2013). Spatially Constrained Incoherent Motion (SCIM) Model Improves Quantitative Diffusion-Weighted MRI Analysis of Crohn’s Disease Patients. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41083-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41082-6

  • Online ISBN: 978-3-642-41083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics