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Abstract During the past years there has been an explosion of intierésirning
methods based on sparsity regularization. In this papedig@iss a general class
of such methods, in which the regularizer can be expresséukasomposition of
a convex functiorw with a linear function. This setting includes several metho
such the group Lasso, the Fused Lasso, multi-task learmidgheany more. We
present a general approach for solving regularizationlprob of this kind, under
the assumption that the proximity operator of the functoris available. Further-
more, we comment on the application of this approach to supeator machines,
a technique pioneered by the groundbreaking work of Viadifapnik.
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1 Introduction

In this paper, we address supervised learning methods welnéchased on the opti-
mization problem

min {f(x) +9(x)}, (1)
xeRd
where the functionf measures the fit of a vectar(linear predictor) to available
training data angj is a penalty term or regularizer which encourages certgiagy
of solutions. Specifically, we let(x) = E(y,Ax), whereE : RS x RS — [0, ) is an
error functiony € RS is a vector of measurements aAd= RS9 a matrix, whose
rows are the input vectors. This class of regularizationho@s$ arise in machine
learning, signal processing and statistics and have a \aitigerof applications.
Different choices of the error function and the penalty fiow correspond to
specific technigues. In this paper, we are interested irirsplproblem[(1) wherf
is astrongly smooth convdunction (such as the square erBy, AX) = ||y — AX||3)
and the penalty functiog is obtained as the composition of a “simple” function
with a linear transformatioB, that is,

9(x) = w(BX) , 2)

whereB is a prescribedn x d matrix andw is anondifferentiable convefunction
onRY. The class of regularizefsl(2) includes a variety of methddpending on the
choice of the functiorw and of matrixB. Our motivation for studying this class of
penalty functions arises from sparsity-inducing regakion methods which con-
siderw to be either the; norm or a mixed’1-¢, norm. WhenrB is the identity ma-
trix and p = 2, the latter case corresponds to the well-known Group Lassthod
[36], for which well studied optimization techniques areiable. Other choices of
the matrixB give rise to different kinds of Group Lasso with overlappgmgups
[15,[37], which have proved to be effective in modeling stilued sparse regression
problems. Further examples can be obtained by consideamgpasition with the
¢1 norm, for example this includes the Fused Lasso penaltytfom¢31] and the
graph prediction problem of [13].

A common approach to solve many optimization problems ofgineeral form
@@ is via proximal-gradient methods. These are first-oitgeative methods, whose
computational cost per iteration is comparable to gradiestent. In some prob-
lems in whichg has a simple expression, proximal-gradient methods carive c
bined with acceleration techniqués[22] 24, 32], to yiefphificant gains in the num-
ber of iterations required to reach a certain approximadiuracy of the minimal
value. The essential step of proximal-gradient methodsires the computation
of the proximity operator of functiog, see Definitiof L below. In certain cases of
practical importance, this operator admits a closed forimckwv makes proximal-
gradient methods appealing to use. However, in the genasal[@®) the proximity
operator may not be easily computable.

We describe a general technique to compute the proximityadbpeof the com-
posite regularizef{2) from the solution of a fixed point desh, which depends on
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the proximity operator of the functiom and the matrixB. This problem can be
solved by a simple and efficient iterative scheme when th&imity operator of
w has a closed form or can be computed in a finite number of st€psn f is a
strongly smooth function, the above result can be usedhegetith Nesterov’s ac-
celerated method [22, 24] to provide an efficient first-omiethod for solving the
optimization problem{1).

The paper is organized as follows. In Secfibn 2, we reviemdi®n of proximity
operator, useful facts from fixed point theory and presewraergent algorithm for
the solution of problem{1) whef is quadratic function and then an algorithm
to solve the associated optimization probldd (1). In Sed8pwe discuss some
examples of composite functions of the fofth (2) which areahle in applications.
In Sectiorid we apply our observations to support vector in@stand obtained new
algorithms for the solution of this problem. Finally, Secif contains concluding
remarks.

2 Fixed Point Algorithms Based on Proximity Operators

In this section, we present an optimization approach whesh fixed point algo-
rithms for nonsmooth problems of the forld (1) under the aggtion (2). We first
recall some notation and then move on to present an approacimipute the prox-
imity operator for composite regularizers.

2.1 Notation and Problem Formulation

We denote by(-,-) the Euclidean inner product d& and let|| - ||, be the induced
norm. Ifv: R — R, for everyx € RY we denote by(x) the vector(v(x))% ;. For

everyp > 1, we define thé, norm ofx as||x||p = (F%; |xi|p)%'.

As the basic building block of our method, we consider thénjation problem
@@ in the special case whehis a quadratic function and the regularization teym
is obtained by the composition of a convex function with @éinfunction. That is,
we consider the problem

min{%yTQy— X'y+w(By):ye Rd}. (3)

wherex is a given vector iR andQ a positive definited x d matrix. The devel-
opment of a convergent method for the solution of this pnobtequires the well-
known concepts of proximity operator and subdifferentfal convex function. Let
us now review some of salient features of these importammnetvhich are needed
for the analysis of probleni{3).

The proximity operator on a Hilbert space was introduced myédu in[[20].
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Definition 1. Let w be a real valued convex function &{. The proximity operator
of wis defined, for everx € RY by

(1
ProX,,(x) = argmm{gly—xn%w(y) ye Rd} . (4)

The proximity operator is well defined, because the abovermim exists and is
unique.

Recall that the subdifferential @b at x is defined a®w(x) = {u:uc RY, (y—
X,U) + w(x) < w(y), Yy € RY}. The subdifferential is a nonempty compact and
convex set. Moreover, i is differentiable ak then its subdifferential at consists
only of the gradient otv atx.

The relationship between the proximity operator and theddigvential of w
are essential for algorithmic developments for the sotutid (3), [2,[9,/19/21].
Generally the proximity operator is difficult to computecnt is expressed as the
minimum of a convex optimisation problem. However, the armes rare circum-
stances where it can obtained explicitly, for examples wiséx) is a multiple of
the /1 norm ofx the proximity operator relates to soft thresholding andeoger a
related formula allows for the explicit identification oftproximity operator for the
f, norm, see, for examplé,l[2] [9.]19]. Our optimisation prob@ncan be reduced
to the identification of the proximity operator for the consfimn functionw o B.
Although the prox ofww may be readily available, it may still be a computational
challenge to obtain the prox @bo B. We consider this essential issue in the next
section.

2.2 Computation of a Generalized Proximity Operator with a Fixed
Point Method

In this section we consider circumstances in which the pnétyioperator ofew can
be explicitly computed in a finite number of steps and seeklgorighm for the
solution of the optimisation probleral(3).

As we shall see, the method proposed here applies for angiveodefinite ma-
trix Q. This will allow us in a future publication to provide a sedoorder method
for solving [1). For the moment, we are content in focusing@nby providing a
technique for the evaluation of prgxs.

First, we observe that the minimizgrof (@) exists and isinique Indeed, this
vector is characterised by the set inclusion

Qyex—B'dw(BY) .

To make use of this observation, we introduce the affine toamsmtionA: R™ — R™M
defined, for fixeck € RY, A > 0, atze R™ by
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Az:= (1 —ABQ 1B")z+BQ x

and the nonlinear operatét: R™ — R™

H:= (I —prox%;) oA. (5)

The next theorem froni 2] is a natural extension of an obgimvan [19], which
only applies to the cas@ = I.

Theorem 1.1f w is a convex function o™, B € R™Y, x € RY, A is a positive
number, the operator H is defined as(l), andy is the minimizer of3) then

§=Q (x—AB'v)
if and only if ve R™ is a fixed point of H.

This theorem provides us with a practical tool to solve peab(3) numerically
by using Picard iteration relative to the nonlinear mapgidJnder an additional
hypothesis on the matrBQ 1Q’, the mappind is non-expansive, se€l[2]. There-
fore, Opial’'s Theoren{[38] allows us to conclude that theaRidterate converges
to the solution of[(B), se€[2. 119] for a discussion of thisiesss~urthermore, under
additional hypotheses the mappifgs a contraction. In that case, the Picard iterate
converges linearly.

We may extend the range of applicability of our observateams provide a fixed
point proximal-gradient method for solving probleh (1) whke regularizer has the
form (2) and the errof is astrongly smootitonvex function, that is, the gradient of
f, denote by 1f, is Lipschitz continuous with constaht So far, the convergence of
this extension has yet to be analyzed. The idea behind peddnadient methods,
see[[9. 24, 32] and references therein, is to update thert@sémate of the solution
X using the proximity operator of and the gradient of. This is equivalent to
replacingf with its linear approximation around a point which is a fuaotof the
previous iterates of the algorithm. The simplest instarfdéie iterative algorithm
is given in Algorithm 1C1. Extensions to acceleration scheare described in[2].

Algorithm 1 Proximal-gradient & fixed point algorithm.
X1 <0
for t=1,2,...do
Computex.;1 ¢ Proxe g (% — £ 0f (x))
by the Picard process.
end for
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2.3 Connection to the forward-backward algorithm

In this section, we consider the special c@se | and interpret the Picard iteration
of H in terms of aforward-backward algorithnin the dual, for a discussion of the
forward-backward algorithm, see for example [9]

The Picard iteration is defined as

Vi1 ¢ (I —proxe)((1 — A BB ) + BX) (6)

We first recall the Moreau decomposition, see, for exam@leaifid references
therein, which relates the proximity operators of a lowanis®ntinuous convex
function¢ : R™ — RU{+} and its conjugate,

| = proxs + prox- - @)
Using equation{7), the iterative stép (6) becomes
Vi1 4= ProX o (\t — (ABB'w% — BX))

which is a forward-backward method. We can further simplifig iteration by in-
troducing the vector, := Av; and obtaining the iterative algorithm

Zi1+ A ProX oy (lzt —(BB'z — Bx)) .
) A
Using the readily verified formulas

1
0 prox, goAl = prox}\;gw\I

and

() ~foron

see, for examplel [5], we obtain the equivalent forwardkbaad iteration
Zii1 ¢ ProXy - (z — (ABB'z —ABX)) .

This method is a forward-backward method of the type comsitim [8, Alg. 10.3]
and solves the minimization problem

(1
m|n{§||BTz—x|2+ w(2) 1 z€ Rm} .
This minimization problem in turn can be viewed as the duahefprimal problem

min{%|u|2—<x,u)+w(Bu):ueRd} (8)



On Sparsity Inducing Regularization Methods for Machinarnéng 7

by using Fenchel's duality theorem, see, for example, [Fjrédver, the primal and
dual solutions are related through the conditiefis 2= (—x andZe dw(B0), the
first of which implies thaix — AB™V equals the solution of the proximity problem

(@), that is, equals proxg(x).

3 Examples of Composite Functions

In this section, we provide some examples of penalty funstighich have appeared
in the literature that fall within the class of linear comftesunctions[(2).

We define for everg € N, x e R andJ C {1,...,d}, the restriction of the vector
xto the index sed asx; = (x :i € J). Our first example considers the Group Lasso
penalty function, which is defined as

K
woL (X) = /Zlﬂxm ll2, 9)

whereJ, are prescribed subsets ff,...,d} (also called the “groups”) such that
U‘g:l\]g ={1,...,d}. The standard Group Lasso penalty, see, for exaniple, [86], ¢
responds to the case that the collection of grolips 1 < ¢ < k} forms a partition
of the index se{{1,...,d}, that is, the groups do not overlap. In this case, the op-
timization problem[(¥) forw = wg. decomposes as the sum of separate problems
and the proximity operator is readily obtained by using thexjmity operator of
thel,-norm to each group separately. In many cases of interesgvey, the groups
overlap and the proximity operator cannot be easily conthute

Note that the functior{9) is of the forrl(2). We lét= |J;|, m= z'gzldg and
define, for everyz € R™, w(z) = TX_;||z||2, where, for every = 1,... k we let
= (z:y(21d; <i<y|_;d;). Moreover, we choosB" = [Bj ..., B;], whereB,
is ad; x d matrix defined as

Lt j= 9]
(Bo)ij = {O otherwise ’

where for every] C {1,...,d} andi € {1,...,|J|}, we denote byl[i] thei-th largest
integer inJ.

The second example concerns the Fused Lass$o [31], whicideosthe penalty
functionx — g(x) = zid;ll [Xi — Xi+1]. This function falls into the clas§l(2). Indeed,
if we choosew to be the/; norm andB the first order divided difference matrix

1-1 0......
B_ |0 1-

=
o

we get baclg. The intuition behind the Fused Lasso is that it favors vecichich
do not vary much across contiguous components. Furthengrigs of this case
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may be obtained by choosijto be the incidence matrix of a graph, leading to the
penaltyz?i,j)eE [xi — x;|. This is a setting which is relevant, for example, in online
learning over graphs 18, 114].

The next example considers composition with orthogonaihgiiant (Ol) norms.
Specifically, we choose a symmetric gauge functipthat is, a normh, which is
both absoluteand invariant under permutationf35] and define the functiow :
RY*M [0, ), atX by the formulaw(X) = h(a (X)), wherea(X) € [0,00)", r =
min(d, n) is the vector formed by the singular values of ma¥Xixn non-increasing
order. An example of Ol-norm are Schattgemorms, which correspond to the case
that w is the {p-norm. The next proposition provides a formula for the pnoiky
operator of an Ol-norm. A proof can be found|in [2].

Proposition 1. With the above notation, it holds that

ProX,.q(X) = Udiag(prox,(a(X)))V"

where X= Udiag(ag(X))V" and U and V are the matrices formed by the left and
right singular vectors of X, respectively.

We can compose an Ol-norm with a linear transformaBothis time between
two spaces of matrices, obtaining yet another subclassralfyefunctions of the
form (2). This setting is relevant in the context of multsitdearning. For example,
in [1] his chosen to be thieaceor nuclearnorm and a specific linear transformation
which models task relatedness is considered. Specifitadlyegulariser is given by
g(X) = HG (X(1— %eeT)) wheree € RY is the vector all of whose components
are equal to one.

I

4 Application to Support Vector Machines

In this section, we turn our attention to the important topicupport vector ma-
chines (SVMs), which are widely used in data analysis. SVMsenpioneered by
the fundamental work of Vapnik[6, 10,133] and inspired one®fo begin research
in machine learnind [11, 2[7, 26]. For that we are all verygfiatto Vladimir Vapnik
for his fundamental contributions to machine learning.

First, we recall the SVM primal and dual optimization prahk [33]. To sim-
plify the presentation we only consider the linear versib88Ms. A similar treat-
ment using feature map representations is straightforaaddso will not be dis-
cussed here, although this in a an important extension cfipedvalue. Moreover,
we only consider SVMs for classification, but our approaahlvaapplied to SVM
regression and other variants of SVMs which have appear@ztiliterature.

The optimisation problem of concern here is given by

min{C.iV(inTxi)_F%‘HM2:WE ]Rd} (20)
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whereV (z) =max0,1-2),z€ R, is the hinge loss ardis a positive parameter bal-
ancing empirical error against margin maximization. Weqet RY, i € {1,...,m},
be the input data ang € {—1, +1} be the class labels.

Problem [(ID) can be viewed as a proximity operator comprtatf the form
@), withQ=1,x=0,w(z) =C3",V(z) andB = [y1X1. .. YmXm| . The proximity
operator of the hinge loss is separable across the cooediaat simple to compute.
In fact, for any{ € R andp > 0 it is given by the formula

prOX[JV(Z) = mln(z + H, ma)<Z7 1))

Hence, we can solve problem{10) by Picard iteration, namely
Verq (l —prox%) ((1—ABB")w) (11)

with A satisfying 0< A < WZBBT)’ which ensures that the nonlinear mapping is
strictly contractive. Note that, € R™ and that this iterative scheme may be inter-
preted as acting on the SVM dual, see Sedtioh 2.3. In faaie ke simple relation
to the support vector coefficients given by the equa@iw%a. Consequently, this
algorithmic approach is well suited when the sample sizesmall compared to the
dimensionalityd. An estimate of the primal solution, if required, can be oied by
using the formulav = —ABTv. Also, whend < mthe last equation, relating and

v, cannot be inverted. Hencg, {11) is not useful in this case.

Recall that the dual problem d¢f {110) is givén [33]
min{%|BTa|2—1Ta: ac [o,C]m}. (12)

This problem can be seen as the computation of a generalingohpty operator of

the typel(B). To explain what we have in mind we use the natatias the elemen-
twise product between matrices of the same size (Schur ptpauod introduce the
kernel matrixK = [Xg... Xm| " [X1 - . - Xm].

Using this terminology, we conclude that probldm](12) istwf form [3) with
Q=Koyy", x=1(the vector of all onesB = | andw = ax, wherewc(a) =0 if
a € [0,C]™andac(a) = + otherwise. Furthermore, the proximity operator éor
is given by the projection on the @ C|™, that is pro,_ (a) = min(C,max0,a)).
These observations yield the Picard iteration

Vi1 (T=prox,) (1=A(K oy v+ (K toyy)1) (13)

with 0 < A < 2Amin(K). This iterative scheme requires that the kernel magris
invertible, which is frequently the case, for example, ia tiase of Gaussian kernels.
Another requirement is that eith&* has to be precomputed or a linear system
involving K has to be solved at every iteration, which limits the scéitstof this
scheme to very large samples. In contrast, the iterdfiongdd always be applied,
even wherK is not invertible. In fact, wheiK, and equivalenthyBB', is invertible
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then both iterative methods {|11]), {13) converge linearly eite which depends on
the condition number dk, see[[2["1D].

Recall that algorithm[{d1) is equivalent to a forward-baakivmethod in the
dual, see Sectidn 2.3. Thus, an accelerated variant akiagtekbv's optimal method
and FISTA [3] could also be used. However, in the case of aartible kernel
matrix, both versions converge linearly [24] and hence itdsclear whether there
is any practical advantage from the Nesterov update. Fumibve, algorithm[{TI3)
could also be modified in a similar way.

On the other hand, ifh > d, we would directly attempt to solve the primal prob-
lem. In this case, the Nesterov smoothing method can be ewh|§23]. An ad-
vantage of such a method is that it only sto@sl) variables, even though it needs
O(md) computations per iteration. The method described abowsegdan Picard
iteration, requires mifO(md), O(n?)) cost per iteration and stor€m) variables.

Let us finally remark that iterative methods similar[fol(14{I8) can be applied
to ¢, regularization problems, other than SVMs, provided thatghoximity oper-
ator of the corresponding loss function is available. Commlaoices for the loss
function, other than the hinge loss, are the logistic andsgloss functions lead-
ing to logistic regression and least squares regressispecgively. In particular, in
these two cases, the primal objectilzel(10) is both smoothstmodgly convex and
hence a linearly convergent gradient descent or accetbgadelient descent method
can be used[25], regardless of the conditioning of the Kemadrix.

5 Conclusion

We presented a general approach to solve a class of nonsomtatiization prob-
lems, whose objective function is given by the sum of a sméatim and a nons-
mooth term which is obtained by linear function compositibhe prototypical ex-
ample covered by this setting is a linear regression reigaliéon method, in which
the smooth term is an error term and the nonsmooth term iswdarézer which
favors certain desired parameter vectors. An importaritifeaof our approach is
that it can deal with a rich class of regularizers and, as shmwnerically in[[2], is
competitive with the state of the art methods. Using thesasdwe also provided
a fixed-point scheme to solve support vector machines. Aghawumerical exper-
iments have yet to be done, we believe this method is simpegmnto deserve
attention by practitioners.

We believe that the method presented here should be thipinyklstigated both
in terms of convergence analysis, where ideas present@iijmjay be valuable,
and numerical performance with other methods, such asatedirection of mul-
tipliers, see, for example,][4], block coordinate descalti¢rnate minimization and
others. Finally, there are several other machine learniaglems where ideas pre-
sented here apply. For example, in that regard we mentiotipteukernel learning,
see for example[[18, 28, 9,130] and references thereine stractured sparsity
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regularizers([16, 17] and multi-task learning, see, fomepke [1,[7]12]. We leave
these tantalizing issues for future investigation.
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